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ABSTRACT 
 
 
 
The work in this thesis is in support of a larger research effort to implement a 

cluster of autonomous airborne vehicles with the capability to conduct coordinated flight 

maneuver planning and to perform distributed sensor fusion. Specifically, it seeks to 

design and implement an onboard flight control and navigation system for NPS FROG 

UAV, which will be used as the autonomous airborne vehicle for the research, using the 

newly marketed xPC Target Rapid Prototyping System from The Mathworks, Inc. Part I 

briefly introduces the aircraft and explains the necessity for an onboard computer for the 

UAV. Part II describes the construction of the miniature aircraft computer, INS/GPS and 

air data sensor integration implementation as well as the rapid prototyping process. Part 

III covers the process to create a 6DOF model for the aircraft and the design of the 

aircraft autopilot, while Part IV presents a vision-based navigation algorithm that can be 

implemented on the UAV to give it some form of autonomous flight trajectory planning 

capability. Preliminary ground test results are presented in Part V to conclude this study.  
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I. INTRODUCTION 

A. BACKGROUND 

The Navy envisions that the battlefield of the future would include clusters of 

autonomous mobile agents equipped with a large number of sensors connected by 

wireless networks in a hostile and highly dynamic combat environment susceptible to 

hardware failures and jamming. As a result, changes in network topology and loss of 

connectivity between agents are expected. To allow the autonomous agents to continue 

their missions despite these changes in the network quality of service (QoS), they must 

have adequate ability to integrate data from as many working onboard sensors as possible 

to assess accurately the situational picture for decision making and for executing 

appropriate flight maneuvers.  

The research question in support of such a battlefield setup is the execution of 

command, control and autonomous intelligent flight maneuver planning of a group of 

unmanned aerial vehicles and the construction of a distributed adaptive architecture for 

fusing sensor data over dynamically varying wireless networks [1]. The main thrust of 

this thesis is in line with the first research area mentioned above, i.e., to develop the basic 

framework to implement command and control (C2) of a friendly cluster of autonomous 

unmanned aerial vehicles (UAVs) including algorithms for flight navigation and 

trajectory tracking in order to adopt certain flight profiles at various stages of the mission. 

 

B. OBJECTIVES 

This thesis seeks to implement an autonomous flight control and target approach 

guidance algorithm using the NPS FROG UAV as a test platform. The scope of work 

includes designing the autopilot for the aircraft, exploring suitable trajectory planning 

navigation algorithms and assembling an onboard computer to perform data fusion, flight 

control and guidance commands computation. 

In addition, the timing of this effort coincided with the emergence of the xPC 

Target Rapid Prototyping System from The Mathworks, Inc. Such a system offers 
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enormous flexibility for implementing variants of the guidance and control algorithm or 

changes to the hardware architecture with significantly compressed design-to-flight-test 

time. Hence, a secondary objective of this project is to explore and accumulate expertise 

on this new tool, and apply it to the intended setup. 

Details of both of these objectives will be covered in subsequent chapters. The 

rest of this chapter will serve as a lead-in by introducing the FROG UAV, which will act 

as the test aircraft, its instrumentation and the background on why an onboard computer 

is deemed necessary to implement the intended research objective.  

 

C. THE AIRCRAFT  

NPS’s FROG UAV, shown in Figure I.1, has been the test bed for advanced 

control and airborne sensor projects at the Naval Postgraduate School [2,3]. It is 

manufactured by BAI Aerosystems as the BAI-TERN (Tactically Expendable Remote 

Navigator) and derives from the FOG-R variant of the BAI-TERN used by the US Army, 

hence the name ‘FROG’. It is a small high wing monoplane with conventional elevator, 

rudder, ailerons and flaps, and uses servomotors designed for radio-controlled airplanes 

to drive the control surfaces. (Figure I.2). More details on its physical characteristics and 

engine are documented in Appendix A and in [4]. 

Previous control system projects made use of only very basic inertial sensing and 

a simple electromechanical autopilot in the aircraft. In the existing setup, the computer 

(shown in Figure I.3) which monitors flight data and computes aircraft control commands 

is located on the ground. Hence, raw flight data has to be downlinked from the aircraft to 

the computer via wireless serial modems for processing. Computed control inputs in turn 

are pulse-code modulated and re-transmitted back to the aircraft using a hand-held 

Futaba® remote transmitter, shown in Figure I.4, for the Futaba® receiver in the aircraft to 

interpret and output PWM commands to drive servos that controls the control surfaces.  
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Figure I.1 NPS FROG UAV 

 
 
 
 

 

Figure I.2 FROG UAV 3 View Drawing. 
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Figure I.3 AC-104 Ground Control Computer  

 

 
 

 

 
 
 

 

 
 
 

 

 

 

Figure I.4 Futaba® Transmitter, Receiver and Servos 
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D. CONTROL SETUP & ITS LIMITATIONS 

The original setup introduced above imposes significant limitations on the 

complexity of the flight controller because of latency time to control commands 

generated by the computer on the ground. It also severely restricts the flight profiles that 

can be experimented due to operating range. An alternative method of controlling the 

servos to shorten the delay between computer command output and servo actuation was 

explored in [5]. It too could not fully meet desired specifications. The limitations are 

explained below.  

1. Old Control Setup 

In the original control scheme for the UAV illustrated in Figure I.5, the flight 

control computer was an AC-104 computer situated on the ground. Command signals 

from the AC-104 computer had to be converted to a pulse-code modulated (PCM) signal 

by a Futaba radio controlled transmitter, which broadcasts them to the airplane. The 

Futaba receiver in the FROG UAV decodes the PCM signal and generates pulse-width-

modulated (PWM) commands for each of the control servos to control the aircraft. At the 

same time, in the feedback channel, sensor outputs are captured by auxiliary 

microprocessors, digitized and transmitted via wireless modem to the flight control 

computer on the ground for processing. Such a setup imposed severe controller 

restrictions due to the latency times for data downlink, control inputs computation on 

ground and the command uplink. In fact, the command uplink latency alone was 

measured to be approximately 170 ms in [4] and was found to generate unacceptable 

delay for any practical control frequency in the range of 20Hz to 40Hz.  
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Figure I.5 Original Flight Control Setup (From [4]) 

 

2. Alternative Servo Command 

The short range of the Futaba® remote controller and command path latency led to 

a feasibility study of using an alternate command uplink method by CDR Chris Flood and 

the author in [5]. In the proposed scheme, control commands were sent via serial modem 

from the AC-104 directly to a small onboard micro-controller which generates the PWM 

commands to the servo instead of routing the commands through the Futaba® remote 

control. Such a setup reduced the command latency to 76 msec. It was adequate to 

implement a workable controller but still placed severe restrictions on the controller 

performance. 

The limitations mentioned above would have severe implications on the 

implementation of command and control for a cluster of UAVs. In order to support that 

objective, these constraints need to be overcome first. The proposed solution was to 

install a miniature computer in the UAV in order to minimize flight data and control 

commands transfer as well as to give the aircraft onboard computational capability to 

perform more sophisticated flight maneuver planning autonomously. This new hardware 

and control architecture implementation forms a significant part of this thesis work and is 

discussed in Chapter II. 
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E. PRIMARY INSTRUMENTS 

The FROG UAV can be configured with a variety of instruments such as air-data 

sensors, an inertial measurement unit (IMU), a GPS receiver, an instrumented nose boom 

and even a digital camera. In this project, only sensors necessary for basic aircraft 

control, navigation and communication are installed as a basic configuration. These 

instruments are introduced in the following sub-sections. 

1. Inertial Measurement Unit 

A new altitude heading reference sensor was installed on the UAV for this 

project. This is the AHRS400CA-100 manufactured by Crossbow Technology, Inc shown 

in Figure I.6.  The AHRS combines linear accelerometers, rotational rate sensors, and 

magnetometers to measure linear acceleration, angular velocity, and magnetic flux for all 

three orthogonal axes. It then utilizes a sophisticated Kalman filter algorithm to allow the 

unit to track orientation accurately through dynamic maneuvers in order to compute 

stabilized values of pitch, roll and true-magnetic heading. The Kalman filter will 

automatically adjust for changing dynamic conditions without any external user input. 

Hence, it can effectively function as the inertial measurement unit (IMU) for the aircraft.  

 
Figure I.6 Crossbow Technology’s AHRS400CA-100 

 

The AHRS400CA-100 can be operated in 3 sensor modes and the data available 

from each mode is shown in Table I.1. In all three sensor modes, the AHRS can measure 

linear acceleration up to ±2g and angular velocity up to ±100°/sec. For this project, the 

AHRS is operated in the Angle Mode in order to utilize its Kalman filtering capabilities.  
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In addition, data collection can be done in either continuous update or polled 

mode. A detailed comparison of data output rate in both modes was made in [4]. It was 

concluded that in continuous/angle mode, the AHRS outputs data at an alternating 

frequency of 69.7 Hz and 61.3 Hz, while in the polled mode the AHRS could not respond 

fast enough when polled at a fixed rate of 30 Hz. As such, the continuous mode was used 

in this project to take advantage of the higher data rate subject to an implementation that 

would accommodate a varying data rate.  

The output data from the AHRS400CA-100 is provided in both digital and analog 

formats via a standard female DB-15 connector. The digital data is serially output via RS-

232 interface at 38,400 bps and is the method used for reading data in this project. The 

data packet format and output data interpretation will be described in Section II when the 

data interface implementation between Crossbow AHRS and onboard computer is 

presented. 

 

Angle Mode Scaled Sensor Mode Voltage Mode 

Header (0xFF) Header (0xFF) Header (0xFF) 

Roll Angle Roll Angular Rate Roll Gyro Voltage 

Pitch Angle Pitch Angular Rate Pitch Gyro Voltage 

Heading Angle Yaw Angular Rate Yaw Gyro Voltage 

Roll Angular Rate X-Axis Acceleration X-Axis Acceleration Voltage 

Pitch Angular Rate Y-Axis Acceleration Y-Axis Acceleration Voltage 

Yaw Angular Rate Z-Axis Acceleration Z-Axis Acceleration Voltage 

X-Axis Acceleration X-Axis Magnetic Field X-Axis Mag Sensor Voltage 

Y-Axis Acceleration Y-Axis Magnetic Field Y-Axis Mag Sensor Voltage 

Z-Axis Acceleration Z-Axis Magnetic Field Z-Axis Mag Sensor Voltage 

X-Axis Magnetic Field Temp Sensor Voltage Temp Sensor Voltage 

Y-Axis Magnetic Field Time Time 

Z-Axis Magnetic Field Checksum Checksum 

Temp Sensor Voltage   

Time   

Checksum   

Table I.1 Serial Outputs From AHRS400CA-100 In Various Sensor Modes 
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2. Global Positioning System Receiver 

The GPS receiver used on the NPS Frog UAV is the Trimble Ag132 DGPS 

receiver as shown in Figure I.7. The Ag132 DGPS is a 12 channel L-band differential 

correction receiver that provides sub-meter accuracy. It combines a GPS receiver, a 

beacon differential receiver, and a satellite differential receiver in the same housing. 

These receivers use a combined antenna with a single antenna cable. The Ag132 is 

configured with two programmable RS-232 serial ports and outputs GPS data at 1, 5 or 

10 Hz with latency of 10 msec in RS-232 serial ASCII format at baud rates up to 38,400 

bps. All outputs conform to the National Marine Electronics Association (NMEA)-0183 

data protocol. Among the various sentences in the GPS data stream shown in Table I.2, 

only some information in the $GPGGA and the $GPRMC sentences is relevant to our 

application and is extracted for use by the flight controller and guidance algorithm. 

 
Figure I.7 Trimble Ag132 GPS Antenna and Receiver Mounted on FROG 

 
Message Contents 
GGA Time, position, and fix related data 

GLL  Position fix, time of position fix, and status 

GRS  GPS Range Residuals 

GSA  GPS position fix mode, SVs used for navigation and DOP values 

GST  GPS Pseudorange Noise Statistics 

GSV  Number of SVs visible, PRN numbers, elevation, azimuth and SNR values 

MSS  Signal strength, signal-to-noise ratio, beacon frequency, and beacon bit rate 

RMC  UTC time, status, latitude, longitude, speed over ground (SOG), date, and 
magnetic variation of the position fix 
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VTG  Actual track made good and speed over ground 

XTE Message Cross-track error 

ZDA  UTC time, day, month, and year, local zone number and local zone minutes.  

PTNLDG Proprietary Beacon channel strength, channel SNR, channel frequency, 
channel bit rate, channel number, channel tracking status, RTCM source, and 
channel performance indicator 

PTNLEV Proprietary Time, event number, and event line state for time-tagging change of state on a 
event input line. 

PTNL,GGK Time, Position, Position Type and DOP Values 

PTNLID Proprietary Receiver machine ID, product ID, major and minor release numbers, and 
firmware release date. 

PTNLSM Reference Station Number ID and the contents of the Special Message included 
in valid RTCM Type 16 records. 

Table I.2 Trimble Ag132 Messages 

3. Freewave® Radio Modems  

The communication link between the UAV and the Host Computer on the ground 

is implemented with the DGR-115 RS-232 wireless modem shown in Figure I.8 from 

FreeWave® Technologies, Inc. The FreeWave modem uses frequency hopping spread 

spectrum technology and has a power output of 1/3 Watt. It is capable of communicating 

over a line of sight range of up to 20 miles, and supports data transmission at baud rates 

from 1200 bps to 115.2 Kbps.  In addition, the FreeWave transceiver can operate in either 

point to point or point to multipoint modes, opening up the possibility to control of more 

than one aircraft in future. Its main specifications are shown in Table I.3 

 

 
Figure I.8 DGR-115 Wireless Serial Modem (left) Mounted on UAV (right) 



 11

ITEM SPECIFICATION 
Range 20 Miles 
RS232 Data Throughput  1200 Baud to 115.2 Kbaud 
RS232 Interface Asynchronous, Full duplex 
System Gain 135 dB 

Minimum Receiver Decode Level -110 dBm @ 10-4 raw BER 
-108 dBm @ 10-6 raw BER 

Operating Frequency 902 - 928 MHz 
Modulation Type Spread Spectrum, GFSK 
Spreading Code Frequency Hopping 
Hop Patterns 15 (User Selectable) 
Output Power 1/3 Watt (+25 dBm) 
Error Detection 32 Bit CRC With Packet Retransmit 
Antenna 3 Inch Whip Provided  

Non-standard SMA Connector Allows Use Of 
External Directional or Omni- Directional 
Antennas. 

Power Requirements 10.5 - 18.0 VDC (Centre Positive) 
Power Consumption 180 mA Transmit 

100 mA Receive 
120 mA Average 

Connector RS232  
9 Pin Female, 9 Pin Male to 9 Pin Female 
Straight Through Cable Provided 

Unit Address Unique, Factory Preset 
Operating Modes Point to Point, Point to Multipoint 

Store and Forward Repeater 
Operating Environment -10° C to +50° C 

Table I.3 Freewave® Radio Modem Specifications 

 

4. Differential Pressure Sensor  

A differential pressure sensor shown in Figure I.9 (Model: 144LU04DPC) from 

Sensortechnics was also installed in the FROG UAV to measure airspeed data. It is 

capable of measuring differential pressures up to 5 inches of water and outputs 0-5V 

depending on the pressure difference between the internal static pressure and that on the 

pitot probe mounted on the nose-fairing of the UAV shown in Figure I.10. 
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Figure I.9 Differential Pressure Transducer  

 
 

 
 

Figure I.10 Pitot Probe on UAV 
 
 
 
 
 
 

Diff Ports

Air Pressure 
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II. RAPID PROTOTYPING OF NEW CONTROL SETUP 

A. PROPOSED CONTROL SETUP 

To overcome the constraints in the original setup for the conduct of the 

autonomous UAV cluster C2 research, a new control setup shown in Figure II.1 was 

conceived. In this new setup, the onboard PC-104 computer would receive data from all 

airborne sensors and execute the flight control algorithm to stabilize and steer the aircraft. 

This reduces the latency time between data measurement to its use in computation, and to 

control commands output significantly. It also eliminates the need for flight data to be 

sampled at a high rate of 100Hz or more and transmitted to the computer on the ground 

for flight control computation, thereby reducing the bandwidth requirements on the serial 

modem tremendously. Instead, the onboard computer now only needs to download flight 

data to the host computer on the ground at a much lower 30 Hz to 40 Hz purely for data 

recording purposes, to still get fairly representative flight information for flight re-

construction or parameter identification. As and when required, guidance commands for 

the autopilot can be sent to the flight control computer through the wireless serial modem 

link. This occurs at a much lower data rate.  

PC-104 
Computer 

Control Surface Position Feedback

 • Manual Piloting 
 • Way-Pt Uplink 
 • Flight Data Logging 

Host
Computer

Futaba

Emergency 
Pilot Link 

Futaba®

Rcvr

Control 
Surfaces 

Modem
IMU 

PWM
Switch 

GPS 

Modem

Air 
Data 

Host-Target 
2-way Link 

 
Figure II.1 New Control Setup 
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In an emergency, the onboard computer must quickly hand over the control 

authority of the aircraft back to the Futaba® remote control so that the pilot can regain 

control of the aircraft and pilot it from the ground. This is implemented with a PWM 

Switch that by default takes command from the Futaba® remote control unless the pilot 

grants control of the aircraft to the onboard computer. When the Futaba® remote control 

commands are modified to be sent through the serial modem, its range would increase 

correspondingly with the computer control to 20 miles, and this would allow future flight 

control research work at NPS to be conducted beyond the current 1.5 mile operating 

range. 

The main constraint in the new setup is that the onboard computer must be 

powerful enough, and the data integration processes optimized sufficiently, to implement 

control at an acceptable rate. This consideration is constantly being monitored throughout 

this project and incorporated into the software drivers that are written to integrate sensor 

data.  

 

B. THE RAPID PROTOTYPING SYSTEM 

Implementation of the control setup was expedited using rapid prototyping 

techniques. A rapid prototyping system can be viewed as the complete set of hardware 

and software tools to implement and test the UAV’s flight controller within a reasonably 

short period of development time. In this project, a deliberate decision was taken to shift 

from the previously used RealSim® Rapid Prototyping System by WindRiver, Inc, to the 

newly acquired xPC Rapid Prototyping System by The Mathworks, Inc, as the product 

and technical support for the former is gradually being phased out. To elaborate on the 

various components of the rapid prototyping system, it would be sub-divided into several 

sections– namely, the xPC Target rapid prototyping environment, the airborne computer, 

the data I/O hardware architecture. 
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1. xPC Target Rapid Prototyping Package 

xPC Target is a PC solution for prototyping, testing, and deploying real-time 

systems marketed by The Mathworks, Inc. The rapid prototyping process makes use of 

many toolboxes that are available with the popular Matlab simulation software to support 

implementation of control system simulation, data acquisition and real-time control. 

Computation and signal processing algorithms are first designed and tested as Simulink 

simulation models. xPC Target then makes use of the Real-Time Workshop toolbox to 

convert the Simulink models into C-code, build real-time applications that can executed 

on any standard PC hardware and download into an assigned ‘Target’ PC. To interface 

the real-time application with hardware, users can make use of some of the I/O device 

drivers that comes with xPC Target to support commonly available I/O boards or develop 

their own device driver blocks by writing C-Mex S-functions in MATLAB.  

 

Figure II.2 xPC Target Setup 

 

In a typical setup shown in Figure II.2, a Host computer makes use of Real-Time 

Workshop to build a real-time application based on Simulink models, I/O driver blocks 

and C-code S-functions created in MATLAB and downloads it to a Target computer via 

RS232 or TCP/IP using the xPC Target environment. The application in the target 

computer can be started, stopped, or its model parameters can be changed (called ‘tuned’ 

in xPC), and run-time data can be observed or recorded on the Host or Target PC. The 
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Target PC can be a common desktop PC, a PC/104, CompactPCI, industrial PC or 

Pentium Single Board Computer regardless of operating system because xPC uses its 

own real-time operating kernel. The Target PC is diskette bootable but can be made to 

boot-up internally and initiate the ‘burnt in’ application whenever it is reset if the optional 

xPC Target Embedded Option is installed.  

The advantage of the xPC rapid prototyping system in this project is that it 

contains all the tools required to provide an integrated environment for control system 

design, software engineering, data acquisition and testing before it is finally implemented 

on the intended airborne computer. The software suite consists of the MATLAB package, 

Control System Toolbox, Simulink, Dials and Gauges Blockset, Real-Time Workshop 

and the xPC Target operating system. MATLAB and Control System Toolbox provide 

the capability to design, analysis and implement the flight controller. Simulink provides a 

graphical user interface (GUI) for construction of the controller, simulation and 

visualization. The Dials and Gauges Blockset contains a library of pre-designed blocks to 

facilitate design of a GUI for system parameters to be changed or values of variables to 

be displayed as the application is running. The Real-Time Workshop is an automatic code 

generator for the Simulink models. It converts the Simulink model and the S-Functions 

within it into C code which can then be compiled to create a stand-alone real-time 

executable program. Real-Time Workshop also schedules all the tasks to be carried out 

when the application is activated for the xPC operating system. Once compiled, the 

standalone executable code is suitable for the test-bed environment or for use in the 

embedded real-time system.  The xPC real-time kernel sets up the environment in the 

Target PC to execute the application and maintain communications with the Host to 

allow parameter tuning as the application execution is in progress.  

2. Host Computer 

The Host Computer used in this project is a Pentium III notebook PC running 

Matlab and all the relevant rapid prototyping software toolboxes mentioned in the 

previous section and is situated on the ground. It has a standard serial COM1 port for the 
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Host-Target link implementation and a Ethernet network card for TCP/IP link-up with the 

Target PC which serves as a useful alternate link during development. 

3. Target Airborne Computer 

The Target PC installed on the NPS Frog UAV was re-configured from the  

AC-104 computer assembled by WindRiver Systems Inc. The AC-104 computer, shown 

previously in Figure I.3 was originally developed for WindRiver System’s own RealSim® 

rapid prototyping system. The AC-104 uses a mixture of a PC/104 compact computer I/O 

card, Industrial Pack (IP) I/O modules and a small computer motherboard. It consists of 

an Intel Pentium MMX 233 MHz processor on an Advantech PCM-5862 motherboard 

configured with 16 MB of EDO RAM and a 4 MB flash disk for non-volatile storage. 

Basic I/O is provided by a PCI–SVGA display controller, two RS-232/422/485 serial 

ports, an enhanced parallel port, keyboard controller and a PCI based 10Base-T Ethernet 

connection. 

 

 
Figure II.3 New Miniature Airborne Computer 

 

In the new miniature airborne computer shown in Figure II.3, the Diamond 

Systems Ruby-MM 12 bit D/A converter, the SBS GreenSprings Modular I/O Industry 

Pack IP-68322 data acquisition hardware control module and the IP-Serial board in the 

original setup were all removed. Only the Analogic AIM16 16-bit A/D converter, Flash 

Disk RAM card and motherboard were retained. A 3.5-inch floppy drive was added to 
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boot-up the xPC Target kernel and set of Quartz-MM-5 and Quartz-MM-10 counter/timer 

I/O boards by Diamond Systems was incorporated to get PWM signal generation and 

capture capability. The originally disabled COM3 and COM4 were also recovered with 

appropriate jumper settings on the motherboard and IRQ re-assignment. In addition, a set 

of switching power converters was built into the casing of the new computer to convert 

DC power from the aircraft’s batteries to various voltages for the computer, cooling fan 

and onboard instruments. The resulting miniature computer fits snugly in the front 

compartment of the FROG UAV to give it additional forward center of gravity. 

 

 

Figure II.4 Location of Miniature Computer on UAV 

 

Signal I/O interface between the airborne target computer, the servos that drive 

the aircraft control surfaces and control surface position sensing potentiometers connect 

to the top of the computer as shown in Figure II.5. Within the target computer, the signal 

interface specifications for the I/O boards largely fall into three categories listed below 

and are tabulated for easy reference in the corresponding Appendices. 

a. I/O Address – Appendix B.1 

b. I/O Board Pin Out Connection and Usage – Appendix B.2 

c. Interrupt Routine (IRQ) Assignment – Appendix B.3 

 

Computer 
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Figure II.5 Top Panel Layout of New Computer 

 
 
C. SOFTWARE INTERFACE DRIVERS 

In order for the airborne computer to compile data from onboard instruments, 

software interface drivers had to be written. A significant amount of effort was expended 

in this project to write software interface drivers that will read in and decode data output 

by the IMU and GPS receiver. This was because existing xPC serial data input block can 

only read RS-232 messages with fixed sentence structure (i.e. in 32-bit float or 16-bit 

integer format and each message must end with null character) or binary data stream with 

fixed number of characters without the capability to identify a header byte or handle 

varying number of bytes in messages. On the other hand, to work with the IMU and GPS, 

the interface drivers must be capable of searching for appropriate header byte or header 

string in a continuous stream of RS-232 data while performing checksum computation in 

real-time to validate the data and applying appropriate formula to decode the incoming 

data. Therefore, instrument specific software interface drivers had to be written. Details 

of the driver implementation for the case of the CrossBow IMU and Ag132 GPS is 

discussed next. 
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1. IMU Data Interface 

In the Crossbow AHRS400CA-100, the digital data representing each 

measurement is sent as a 16-bit number (two bytes). The data is sent in ‘Big Endien’ 

format, i.e. MSB first then LSB. In Angle Mode, the data generally represents a quantity 

that can be positive or negative and is sent as a 16-bit signed integer in 2's complement 

format. Only the timer information and temperature sensor voltage are sent as unsigned 

integers. Each data packet begins with a header byte (255) and ends with a checksum. 

Hence, for the Angle Mode used in this project, each message consists of 30 bytes 

inclusive of the header byte, 14 data values and the checksum as shown in Table II.1.  

a. IMU Data Receive Implementation 
Several characteristics peculiar to the Crossbow AHRS message data 

structure shown in Table II.1 dictated the way the software driver receiving serial data 

from Crossbow had to be written. First, the message rate (i.e. number of message 

Crossbow outputs) in Continuous Data Collection Mode is not constant. It was measured 

to be fluctuating between 69.7 Hz and 61.3 Hz in [4]. This precludes the use of a standard 

message retrieval rate (e.g. fixed at 65 read per second) by the airborne computer if we 

intend to read and utilize every piece of data output from the instrument. Second, the 

header byte FF will not be the only FF byte in the each data packet because FF bytes can 

occur in the message body. Therefore, the receiving software driver must count the bytes 

received from the serial port and use the checksum to determine if a particular FF byte is 

a header or just another byte in the body of the message. The implemented Crossbow data 

receive and decode Simulink block diagram is shown in Figure II.6. 
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Figure II.6 Crossbow AHRS Data Receive and Decoding Block Diagram 
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The ‘Xbow Receive’ block calls the data receive driver xbowrcv1p3.c in 

Appendix C. xbowrcv1p3.c uses a soft-buffer to collect every byte received by the COM 

port serial buffer and progressively check every byte in the soft-buffer for a FF byte. 

Upon locating each FF byte (possible message header), the routine computes the 

checksum of all data bytes (Byte 2 to Byte 29 in Angle Mode) to assess if the computed 

checksum tallies with the transmitted checksum byte (Byte 30 in Angle Mode case). If 

the checksum does not tally, that FF byte is not a header and the routines goes in search 

of the next FF byte. If the checksum tallies, the routine outputs the full message (Header 

byte + 28 data bytes + checksum byte in Angle Mode case) and shift unused bytes to the 

front of the soft-buffer for processing at the next time-step. If there is inadequate data to 

form a message (this occurs if the sampling interval is much smaller than data rate), the 

previous message is returned during each code execution time-step. If on the other hand, 

the sampling interval is longer than data rate, and the data in soft-buffer exceeds 100 

bytes (i.e. about 3 messages), the soft-buffer is flushed to allow new incoming bytes to 

reach the front of soft-buffer for processing. This will assure the ‘freshness’ of data. As 

such, the implemented driver is able to collect every useful byte of data and operates 

independently of the message rate from the IMU.  

 
Byte  VG Mode  Scaled Sensor Mode Voltage Mode 

0  Header (255)  Header (255)  Header (255) 

1  Roll Angle (MSB)  Roll Angular Rate (MSB)  Roll Gyro Voltage (MSB) 

2  Roll Angle (LSB)  Roll Angular Rate (LSB)  Roll Gyro Voltage (LSB) 

3  Pitch Angle (MSB)  Pitch Angular Rate (MSB)  Pitch Gyro Voltage (MSB) 

4  Pitch Angle (LSB)  Pitch Angular Rate (LSB)  Pitch Gyro Voltage (LSB) 

5  Heading Angle (MSB)  Yaw Angular Rate (MSB)  Yaw Gyro Voltage (MSB) 

6  Heading Angle (LSB)  Yaw Angular Rate (LSB)  Yaw Gyro Voltage (LSB) 

7 Roll Angular Rate (MSB)  X-Axis Acceleration (MSB)  X-Axis Accel Voltage (MSB) 

8  Roll Angular Rate (LSB)  X-Axis Acceleration (LSB)  X-Axis Accel Voltage (LSB) 

9 Pitch Angular Rate (MSB)  Y-Axis Acceleration (MSB)  Y-Axis Accel Voltage (MSB) 

10  Pitch Angular Rate (LSB)  Y-Axis Acceleration (LSB)  Y-Axis Accel Voltage (LSB) 

11  Yaw Angular Rate (MSB) Z-Axis Acceleration (MSB)  Z-Axis Accel Voltage (MSB) 

12  Yaw Angular Rate (LSB)  Z-Axis Acceleration (LSB)  Z-Axis Accel Voltage (LSB) 

13  X-Ax is Acceleration (MSB) X-Axis Magnetic Field (MSB) X-Axis Mag Voltage (MSB) 
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14  X-Axis Acceleration (LSB)  X-Axis Magnetic Field (LSB)  X-Axis Mag Voltage (LSB) 

15  Y-Axis Acceleration (MSB)  Y-Axis Magnetic Field (MSB)  Y-Axis Mag Voltage (MSB) 

16  Y-Axis Acceleration (LSB)  Y-Axis Magnetic Field (LSB)  Y-Axis Mag Voltage (LSB) 

17  Z-Axis Acceleration (MSB)  Z-Axis Magnetic Field (MSB)  Z-Axis Mag Voltage (MSB) 

18  Z-Axis Acceleration (LSB)  Z-Axis Magnetic Field (LSB)  Z-Axis Mag Voltage (LSB) 

19  X-Axis Magnetic Field (MSB)  Temp Sensor Voltage (MSB)  Temp Sensor Voltage (MSB) 

20  X-Axis Magnetic Field (LSB)  Temp Sensor Voltage (LSB) Temp Sensor Voltage (LSB) 

21  Y-Axis Magnetic Field (MSB)  Time (MSB)  Time (MSB) 

22  Y-Axis Magnetic Field (LSB)  Time (LSB)  Time (LSB) 

23  Z-Axis Magnetic Field (MSB)  Checksum  Checksum 

24  Z-Axis Magnetic Field (LSB)   

25  Temp Sensor Voltage (MSB)   

26  Temp Sensor Voltage (LSB)   

27  Time (MSB)   

28  Time (LSB)   

29  Checksum   

Table II.1 Serial Data Structure From Crossbow AHRS400CA-100 

 

b. Decoding Crossbow Data 
The decoding routine simply takes in the float value of consecutive two 

bytes after the header byte, multiplies the first byte of each pair by 256, adds it to the 

second byte to obtain the numerical value for data items transmitted in 2’s complements. 

Each set of data (e.g. angles, rates, acceleration and magnetic field) is then scaled 

according to Simulink implementation structure shown in Figure II.7. The factors AR, 

GR and MR are specific to each Crossbow AHRS and are given in the factory calibration 

data of the instrument. An example of the decoded data for Euler angles and rates is 

presented in Figure II.8 when the Crossbow IMU was rotated in the roll, pitch and yaw 

axis sequentially by approximately 80° in each direction to check the validity of the 

decoded data. 
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Figure II.7 Simulink Block to Decode Crossbow Data 

 
 

 
Figure II.8 Decoded Euler Angle and Rates from Crossbow 

Scaling: 

Angle = data*(180°)/2^15 

Rate   = data*(AR*1.5)/2^15 

Accel  = data*(GR * 1.5)/2^15 

Mag    = data*(MR*1.5)/2^15 
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2. GPS Data Interface 

The Ag132 receives GPS messages in NMEA-0183 format. The messages are 

essentially strings of comma-delimited text shown in Figure II.9 below. Each NMEA 

message includes a message ID to distinguish the message from other NMEA messages 

in the data stream. The actual data included in NMEA-0183 messages is placed in fields. 

Each NMEA message contains different number of fields, and each field is preceded by a 

comma character. The messages include a checksum value which is useful for checking 

the integrity of the data included in the message. The checksum is the 8-bit exclusive OR 

of all the characters in the message, between the ‘$’ and ‘*’ delimiters.  

 
Figure II.9 NMEA-0183 Message Structure 

 

a. Receiving GPS Message Strings 
The manner in which GPS messages are received the airborne computer is 

shown in Figure II.10 . The GPS Receive block executes the gpsrcv.c software driver in 

Appendix C to read every byte of the GPS data into a storage and output buffer system 

(similar to that describe for the Crossbow IMU so that no data byte is lost when sampling 

is done at data rates higher than the incoming GPS data), evaluates the 5-byte header 

following each ‘$’ character, identifies if a GPGGA or GPRMC message has been 

received and returns a Header Index to identify the type of message. It also searches 

through the message to look for the end of message delimiter bytes (0x0D, 0x0A) which 
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mark the end of each message and outputs all the bytes between the header string and 

delimiter bytes.  
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Figure II.10 GPS Message Receive Block Diagram 

 

b. Decoding the GPS Messages 
Message decoding is done by two blocks following the GPS_receive 

model as shown in Figure II.11. The GCA and RMC blocks are enabled to execute the 

gpgca.c and gprmc.c routines in Appendix C when the Header Index from the 

GPS_receive model matches the message type each block is assigned to decode.  Since 

each data field is separated by the comma character, the routine extracts each field of 

useful data from the received binary data sent by the GPS_receive model based on the 

expected format and contents of fields for the GPGGA and GPRMC messages as shown 

in Table II.2 and Table II.3 respectively. 
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Figure II.11 GPS Message Decoding Block Diagram 

 
 

Field Description 
1 UTC of position fix in HHMMSS.SS format 
2 Latitude in DD MM,MMMM format (0-7 decimal places) 
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3 Direction of latitude  
N: North 
S: South 

4 Longitude in DDD MM,MMMM format (0-7 decimal places) 
5 Direction of longitude:  

E: East  
W: West 

6 GPS Quality indicator 
0: fix not valid 
1: GPS fix 
2: DGPS fix 

7 Number of SVs in use, 00-12 
8 HDOP 
9 Antenna height, MSL reference 
10 M’ indicates that the altitude is in meters. 
11 Geoidal separation 
12 ‘M’ indicates that the geoidal separation is in meters 
13 Age of differential GPS data record, Type 1. Null when DGPS not used 
14 Base station ID, 0000-1023 

Table II.2 GGA Message Fields 

 
 

Field Description 
1 Time: UTC time of the position fix in hhmmss.ss format 
2 Status 

A: Valid 
V: Navigation Receiver Warning (V is output whenever the 
Receiver suspects something is wrong) 

3 Latitude coordinate  
(the number of decimal places, 0–7, is programmable and determined by the numeric 
precision selected in TSIP Talker for a RMC message) 

4 Latitude direction: N = North, S = South 
5 Longitude coordinate (the number of decimal places, 0–7, is 

programmable and determined by the numeric precision selected in TSIP Talker for a 
RMC message) 

6 Longitude direction 
W: West 
E: East 

7 Speed Over Ground (SOG) in knots (0–3 decimal places) 
8 Track Made Good, True, in degrees 
9 Date in dd/mm/yy format 
10 Magnetic Variation in degrees 
11 Direction of magnetic variation 

E: Easterly variation from True course (subtracts from True 
course) 
W: Westerly variation from True course (adds to True course) 

12 Mode Indication 
A: Autonomous 
D: Differential 
N: Data not valid 

Table II.3 RMC Message Fields 
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D. COMBINED I/O TEST 

The Simulink block diagram for the combined I/O test involving GPS 

data, IMU data, PWM generation, PWM capture and host-target communication 

via serial modem is shown in Figure II.12. It is driven by user inputs from the 

display screen in Figure II.13 created using Dials & Gauges. The PWM signal 

generated by the computer (shown in Figure II.14) was designed to emulate that 

generated by the Futaba® remote control system which uses a pulse period of 

approximately 14.25 milliseconds and a pulse width varying from around 0.9 to 

2.2 milliseconds depending on the command input.  

Figure II.12 Block Diagram For Combined Test 

 

The computer takes only an average of 350 microsecond to compile the GPS, 

IMU, A/D sensor data, output PWM signals, measure PWM signals and display results to 

the VGA monitor at each time step. This execution time can further be reduced if display 
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of data on the xPC scope is removed. Hence, the data collection and processing time on 

the airborne computer has improved significantly over the original setup where data was 

updated only at 25 Hz. 

 
Figure II.13 Combined Test User Interface Screen 

 

 
Figure II.14 PWM Signal Generated by Computer Matches Command 
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III. FLIGHT CONTROLLER DESIGN 

For the controller design effort, a six degrees-of-freedom (6-DOF) model of the 

NPS FROG UAV was first developed in Simulink based on available flight 

characteristics data collected in [6].  The flight controller was then designed using 

classical control inner-outer-loop approach using the dynamic model of the FROG UAV 

around the trimmed flight condition and adjusted for non-linearity with gain-scheduling 

using dynamic pressure as the scheduling parameter. The inner-loop-outer-loop structure 

was chosen as the first controller to be implemented because its structure made it easier 

to conduct checks on the aircraft. Another controller was designed using the Integral 

Linear Quadratic Regulator (Linear LQR) Synthesis method described in [8] to serve as 

performance comparison.  

 

A. 6DOF AIRCRAFT MODEL DEVELOPMENT 

The derivation of equations of motion for a 6-DOF aircraft model can be divided 

into 2 main parts. The first part is the formulation of equations of motion for the aircraft, 

treated as a rigid body, in space. These dynamics are typically common for any rigid 

body. The second part is the computation of aerodynamic, gravitational and thrust forces 

on the aircraft. These forces, except for gravitational, are specific to each aircraft and 

depend directly on its stability and control derivatives as well as on engine performance. 

1. Equations of Motions 

The equations of motion for the linear dynamics and angular dynamics of the 

aircraft is developed as follows: 

a. Linear Dynamics Equations 

The equations for linear motion are governed by Newton’s Second Law, 

F m a= , expressed in the inertial frame { }U . However, aircraft velocities and attitude 

angles are usually measured with respect to the aircraft’s body axis coordinate system 

{ }B . Linear forces and accelerations are also typically expressed in { }B . The origin of 
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the body axis (BO) is taken to coincide with the aircraft center of gravity (c.g.), hence the 

position of aircraft c.g. with respect to inertial axis is denoted U
BOP  and its velocity is 

given by 

U U
BO BOv P       (III.1) 

Pre-multiplying by the rotation matrix from { }U to { }B  gives 

B U B U
U BO U BOR v R P      (III.2) 

where the rotation matrix B
U R  is given by  

cos cos sin cos sin
cos sin sin sin cos sin sin sin cos cos cos sin
cos sin cos sin sin sin sin cos cos sin cos cos

B
U R

Ψ Θ Ψ Θ − Θ 
 = Ψ Θ Φ − Ψ Φ Ψ Θ Φ + Ψ Φ Θ Φ 

Ψ Θ Φ + Ψ Φ Ψ Θ Φ − Ψ Φ Θ Φ  

 (III.3) 

or equivalently as 

B B
BO BOv P=       (III.4) 

The total derivative of a vector A in a rotating coordinate system with angular velocity 

ω , is given by Coriolis’ theorem 

d

dt
A A Aω= + ×      (III.5) 

Hence, the rigid body’s linear acceleration is given by 

B B B
BO BO B BO

dv v v
dt

ω Β= + ×    (III.6) 

Newton’s 2nd law applied to the aircraft c.g. can then written as (III.7) resolved in inertial 

frame or as (III.8) resolved in body axes. 

U U
BO

U
BO

F m a

m v

=

=
     (III.7) 

B B u
u BO
B

BO

F m R v

m v

=

=
      (III.8) 
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Finally, the equation to be modeled is given by (III.9) after incorporating (III.6) into 

(III.8). 

B B B B
BO B BO

d

dt
mF v vω = + × 
 

    (III.9) 

 

b. Angular Dynamics Equations 
The angular equations of motion are derived using Euler’s law for 

conservation of angular momentum in the inertial frame where U
BON  denotes moment 

imparted to the rigid body and U
BOL denotes the rate of change of angular momentum.  

u u
BO BON L=       (III.10) 

Again using the rotation matrix to body axes and applying Coriolis’ Theorem 

B B u
BO u BOL R N=      (III.11) 

B B B B
BO BO B BO

dL L L
dt

ω= + ×     (III.12) 

where the angular momentum term B
BOL  is defined as the product of the inertia 

tensor and the body’s angular velocity plus the inertia tensor of the spinning rotor on the 

aircraft and the rotor’s angular velocity all with respect to body axes. 

 B B B
BO B B R RL I Iω ω+              (III.13) 

Substituting (III.13) into (III.12) gives 

( ) ( )B B B B B B
BO B B R R B B B R R

dL I I I I
dt

ω ω ω ω ω= + + × +   (III.14) 

In this project, B
R RI ω  is also neglected. If we further assume that ,B RI I  and 

B
Rω are constant, (III.15) results. 

( )B B B B B
BO B B B B B R RN I I Iω ω ω ω= + × +    (III.15) 
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c. State Equations 
In summary, the kinematics equations to be implemented in the rigid body 

6DOF model is governed by (III.16) and is re-written in matrix form as (III.17). 

( )
( )B B B

B BO B BO

B B B B B
B B B B B R B

dm v m vF dt
N I I I

ω

ω ω ω ω

 + ×   =    + × +   
 

  (III.16) 

which can be re-arranged and implemented in linear state space form as 

( )1 1

B
B B

B B BO
BO

B B B B B
B B B B B R R B

Fvd v m
I I I I Ndt

ω

ω ω ω ω− −

 
− × +   =    − × + +   

  

 (III.17) 

 

2. Forces and Moments on Aircraft 

In order to compute the BF  and BN  as required in (III.17), the total contribution 

of forces and moments exerted on the aircraft due to aerodynamic, propulsion and 

gravitational effects is computed using the expression (III.18). 

 Pr Pr

Pr

B B BB
Aero op op

B B B
Aero op

F F FF
N N N

 + + 
=   

+    
   (III.18) 

 

a. Aerodynamic Forces and Moments 
The aerodynamics force and moment terms are determined using a first-

order Taylor series expansion around the aircraft trimmed operating point. Each term in 

the series is a partial derivative of  BF  and BN with respect to the aerodynamic variables 

, , , , ,
T

u

V
p q rα β   i.e.  

' '
' '

0Aero x x
F F x F x F Fδ δ δ ∆= + + ∆ +        (III.19) 

' '
' '

0Aero x x
N N x N x N Nδ δ δ ∆= + + ∆ +  

where 
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' , , , , ,
2 2 2T T T T

u pb qc rb
x

V V V V
β α=

 
 
 

    (III.20) 

' ,x β α =        (III.21) 

[ ], ,e r aδ δ δ∆ =      (III.22) 

The forces and moments generated by aerodynamic forces with respect to the 

wind-axis as denoted in (III.23) and the rotation matrix B
w R  defined in (III.24) can be 

applied to obtained B
AF  and B

AN . 

0

' '
' '

w
A

w F
A

C C CF q S C x x
N x x

∂ ∂ ∂   = + + + ∆   ∂ ∂ ∂∆  
  (III.23) 

 
cos cos cos sin sin

sin cos 0

sin cos sin sin cos

B
w R

α β α β α

β β

α β α β α

−

−

 
 =
 
  

         (III.24) 

 

The forces resulting from drag and lift are taken negative to obtain positive signed 

forces in the Bx  (i.e. forward) and Bz  (i.e. down) directions. 

w
Aero

D
Y
L

F
−

−

 
=  
  

   and   w
Aero

l
N m

n

 
=  
  

        (III.25) 

 

The rest of the quantities in (III.23) are defined as follows: 
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∂
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The aerodynamic variables 'x  are typically not used as states in the 

computation of B
AF  and B

AN . Instead, the set of orthogonal linear velocities and angular 

velocities in (III.32) which are easily measured on the aircraft is commonly used. 

 [ ]Tx u v w p q r=     (III.32) 

 

Transformation matrices 'M and 'M  relating  the chosen state vector x to the 

aerodynamic variables 'x and 'x are defined as follows: 

 
' '

' '

:
:

M x x
M x x

→

→
 

where 

1 0 0 0 0 0

10 0 0 0 0

10 0 0 0 0

0 0 0 0 02

0 0 0 0 02

0 0 0 0 0 2

'

T

T

T

T

T

T

V

V

V

b
V

c
V

b
V

M

 
 
 
 
 
 
 =
 
 
 
 
 
   

    (III.33) 

  

2

2

2

2

0 0 0 0 0

0 0 0 0
' T

T

c
V

b
V

M
 
 

=  
 
 

   (III.34) 

 

The complete expression for B
AF  and B

AN  can then be written as 

0

' '
' '

0
0

BB
wA

B FB
A w

R C C CF q S C M x M x
N x xR

  ∂ ∂ ∂   = + + + ∆    ∂ ∂ ∂∆    
  (III.35) 
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b. Gravitational and Propulsive Forces and Moments 
Gravity contributes forces on the rigid body but no moments since the 

forces are assumed to act at the center of gravity. The gravitational forces acting on the 

aircraft are obtained simply by pre-multiplying U
GravF by the appropriate rotation matrix 

as follows: 

 
0
0U

GravF
mg

 
 =  
  

       (III.36) 

then    
0
0B B

Grav UF R
mg

 
 =  
  

       (III.37) 

Propulsive forces and moments are exerted in {B} axis and is simply computed 

directly based on the expressions 

Pr

x
B

op y

z

T
F T

T

 
 =  
  

     (III.38) 

 Pr

l
B

op m

n

T
N T

T

 
 =  
  

     (III.39) 

where Ti’s represents forces or moments due to propulsive thrust. Obviously, the 

propulsive forces and moments depend on the engine installation and must be determined 

for each aircraft individually. For the purpose of this project, the thrust forces in ,B By z  

and moments are considered negligible and are ignored. 

The complete forces and moments exerted on the aircraft are thus given by 

(III.40). It is implemented in Simulink using block diagrams shown in Figure III.1 and 

forms the input to the Equations of Motions portion of the 6DOF model. 

0

' ' Pr
' '

0
0 0 0

B B BB
w Grav op

B FB
w

R F FC C CF q S C M x M x
N x xR

      ∂ ∂ ∂    = + + + ∆ + +          ∂ ∂ ∂∆         
 

(III.40) 
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3. 6DOF Model of FROG UAV in Simulink 

The Simulink models implementing Equations (III.17) and (III.40) are shown in 

the following figures. This non-linear 6DOF model of the FROG UAV was then used to 

design controllers for the aircraft. 
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Figure III.1 Simulink Blocks Implementing 6DOF Model of FROG UAV 

 
 
B. CLASSICAL CONTROLLER DESIGN 

The first autopilot was designed based on classical inner/outer loop methodology 

using the linearized model of the 6DOF FROG UAV developed in the previous section. 

Actuator models representative of those driving surface actuators and throttle on the 

aircraft with saturation limits imposed were included before the non-linear FROG model 

to better emulate the actual hardware response. The procedure consists of evaluating the 

stability of the feedback loop using root locus techniques, adding poles or zeros to shape 

the system behavior in the compensator where needed, adjusting loop gains to achieve 

desired gain and phase margins and verifying the response in each loop with step 

commands of reasonable magnitude.  

General requirements were to attain more than 6dB gain margin, at least 45° 

phase margin and at least one decade bandwidth separation between inner and outer 
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loops. The control channels were designed in the order: yaw damper, speed control, 

altitude control followed by heading control  

1. Yaw Damper Design 

The yaw damper was designed first in order to prevent the aircraft from yawing 

due to its lightly damped dutch-roll mode when it executes a longitudinal maneuver. This 

loop was comparatively more difficult than the rest due to the presence of low damping 

zeros near the origin and a unstable pole from the spiral mode. As shown in Figure III.2, 

the root locus for the yaw damper near the origin would result in instability or very poor 

damping due to the zeros at -0.0834±0.8298i with a simple gain feedback. Poles had to be 

added at -0.5 and -0.3, with zeros at -0.5000±1.0000i to bring the locus quickly into the 

stable region and give good damping as shown in the second root locus in Figure III.2. 

For turn coordination, a computed rate bias of tan /c Tg Vφ was imposed as a 

command to the PI controller in the yaw damper as described in [7] so that yaw damper 

would not attempt to counter a commanded turn. The final structure of the yaw damper is 

shown in Figure III.3. The airplane response responses to yaw rate disturbance inject of 

0.2 rad/s and commanded yaw rate of 0.2 rad/s is presented in Figure III.4. The yaw rate 

feedback method does not give extremely good responses due to the influence of the 

unstable pole from the spiral mode. 

 
Figure III.2 Root Locus of Yaw Damper With and Without Compensator 
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Figure III.3 Yaw Damper Block Diagram 

 
 

 
Figure III.4 Yaw Damper Responses 

 

2. Speed Controller 

A simple PI controller was implemented for speed control as shown in Figure 

III.5. This was enough to give a phase margin 91.8° @ 0.42 rad/s with infinite gain 

margin. Figure III.6 shows that the aircraft would be able to track a commanded 10 fps 

change in airspeed in about 10 seconds.  
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Figure III.5 Speed Control Block Diagram 

 
 

 
Figure III.6 Speed Controller Responses 

 

3. Altitude Controller 

Altitude control entails driving the elevator of the aircraft to pitch the aircraft up 

or down in a climb or dive maneuver to execute desired altitude changes. To achieve this, 

the aircraft must first be capable of pitch control. Hence, the pitch loop is often referred 

to as the inner loop and is designed first. The pitch control loop consists of a PID 

compensator on the pitch attitude error (θe) while the outer loop employed another PID 

compensator with altitude error, which generates the pitch command for the inner loop. 

Additionally, a compensator with pole at –25 and zero at –15 had to be inserted to delay 

the system poles from crossing into the right half plane. This was because the 

longitudinal modes originally had a real zero at s=19.4 and would result in an odd 

number of poles and zeros to the right of the origin and the integrator pole from the outer 
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loop PID would go right immediately otherwise. The resulting controller structure and its 

root locus is presented in Figure III.7 and Figure III.8 respectively. 
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Figure III.7 Altitude Controller Block Diagram 

 

 
Figure III.8 Root Locus of Altitude Controller With Compensator 

 

Figure III.9 shows the pitch control loop responses to commands from the outer 

loop and its disturbance rejection property. In both cases, when 0.2 rad changes were 

input, the elevator deflected a reasonable 0.1 rad or 5°. Figure III.10 shows the aircraft 

model response to a commanded 10 ft change in altitude. The aircraft settled in its new 
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altitude within 15 seconds. Elevator responded in negative direction as expected with 

about 25% increase in throttle required to execute the climb. The bode plots for both 

inner and outer loops are shown in Figure III.11.  

 

 
Figure III.9 Pitch Control Loop Responses 

 

 
Figure III.10 Altitude Control Loop Responses 

 

 
Figure III.11 Altitude Control Inner and Outer Loops Bode Plots 
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4. Heading Controller 

The heading controller was designed in a similar fashion to the altitude controller. 

The outer loop took commanded heading angle error and produced an angle of bank 

command. The inner loop took the bank command to generate the required aileron 

deflection. The inner loop consisted of a PI controller on the bank angle error and a roll 

rate feedback, while the outer loop consisted of a PI controller to null the heading error. 

The controller structure is shown in Figure III.12. Figure III.13 shows that the controller 

was able to track roll commands within 5 seconds and heading commands within 20 

seconds. 
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Figure III.12 Heading Controller Block Diagram 

 
 

 
Figure III.13 Roll and Heading Control Loop Responses 
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Figure III.14 Heading Control Inner and Outer Loops Bode Plots 

5. Complete Controller 

The complete controller was implemented as shown in Figure III.15. The gain and phase 
margins and closed-loop bandwidths are given in Table III.1 below. 
 

Loop GM (dB) PM (deg) CLBW (rad/s) 
Yaw Damper 14.2 46.3 30 
Vt Inf 91.8 0.65 
Pitch Control 12.2 57.0 9.27 
Altitude Commad 14.7 71.6 0.88 
Roll Control 8.6 35.6 14.5 
Heading Command 6.75 67.7 0.78 

Table III.1 Classical Controller Bandwidth Gain and Phase Margins 
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Figure III.15 Complete Flight Controller using Classical Control Design 
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C. LQR CONTROLLER DESIGN  

The second flight controller was designed to control 4 variables in steady-state 

flight – namely, airspeed (Vt), sideslip (v), heading (ψ) and altitude (h). The design was 

done using an Integral LQR structure with state-feedback and is based on the technique 

presented in [8].  The design requirements adopted were: 

 

 Zero steady state errors to constant command in airspeed, sideslip, heading 

and altitude. 

 Overshoot to step commands in altitude and airspeed must not exceed 10%.  

 Rise time in response to step altitude commands and step airspeed commands 

should be around 10 sec. 

 Gain margin in control loops should be at least 6 db and phase margins at least 

45 degrees. 

 Aileron, elevator and rudder loop bandwidth should be around 10 rad/sec. 

Thrust loop bandwidth should not exceed 5 rad/sec. 

The asymptotic property of the LQR controller inherently ensures a stable 

feedback system. The optimal feedback gain Kopt = R-1BTP generated by the LQR method 

minimizes the cost function, 

T

0
 = ( )TJ x Qx u Ru dt

∞
+∫     (III.41) 

 

and assures that the closed loop system is stable, assuming that (A,B) is 

stabilizable, and (Q,A) is detectable. The matrices Q≥0, R>0 are weighting matrices, 

which determine the relative cost of error and energy in the states and control inputs. The 

P≥0 matrix is the unique stabilizing solution to the Algebraic Riccatti Equation. 
-1  -      0 T TA P PA PBR B P Q+ + =   (III.42) 

 

To ensure zero steady state errors to constant altitude and airspeed commands, the 

integral control is used in conjunction with the LQR technique. The altitude error (hc – h) 

and the airspeed error (uc – u) were fed to integrators. The integrating action will ensure 
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that the inputs to each integrator, and hence the altitude and airspeed errors, will be 

driven to zero in steady state in response to constant commands. 

1. Stabilizable and Detectable Criteria  

To design the controller using LQR (linear quadratic regulator) technique, the 

plant must be stabilizable and detectable. A check on the 12-state [u v w p q r φ θ ψ Px Py 

Pz] aircraft model for the 4 controlled variables showed that only 10 states where 

observable. As such, the 10 state equation of motion model with only [u v w p q r φ θ ψ 

Pz] was used for controller design using the step as follows.  

[                 ]  T
zu v w p q r Px φ θ ψ=  

 Construct the synthesis model for the plant. 

 Insert transmission zeros to the synthesis model. (This will be the ‘target’ 

poles location for the state-feedback plant.) 

 Linearize the synthesis model. 

 Adjust the Q and R matrices to vary the cost of states and control inputs. (start 

with identity). 

 Compute the optimal gain K using MATLAB’s “lqr(A,B,Q,R,N)”. 

 Insert the optimal gain K for the plant’s states and error states feedback. 

 Repeat the last 2 steps while adjusting Q and R to achieve desired control 

bandwidths, gain and phase margins. 

2. Synthesis Model and Controller Structure 

The synthesis model and controller structure are shown in the next few figures. 

The Matlab code created to compute the feedback gains, closed-loop response, 

bandwidth, gain and phase margins can be found in Appendix C.  
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Figure III.16 Overview of Synthesis Model for Controller 
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Figure III.19 Linear Integral LQR Controller Structure 

 

For the selected design, two pair of transmission zeros were added in the h-

synthesis loop (at ζ = 0.9, wn = 0.4) and v-synthesis loop (at ζ = 0.9, wn = 1.2), and a 

real pole each for Vt and ψ at 0.7 rad/s and 1.5 rad/s respectively. The diagonal elements 

of the Q and R matrices were set to identity and [2000,5000,1500,2] respectively. The 

3dB closed-loop bandwidths and open-loop gain and phase margins achieved are shown 

in Table III.2. In comparison with the classical controller, the Integral LQR controller 

offers better phase margins. However, it had assumed full-state feedback and may not be 

directly implementable if any of the 10-states listed previously is not easily measurable or 

tends to fluctuate. 
 

Control Loop 3dB BW (rad/s) Gain Margin (dB) Phase Margin (°) 
Aileron 4.8 12 78.9 
Elevator 8.2 18 52.3 
Rudder 1.2 15 91.3 
Throttle 4.6 21 69.7 

 
Table III.2 LQR Controller Bandwidth Gain and Phase Margins 
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3. Complete LQR Controller 

The non-linear system simulation structure adopted in Figure III.20 was based on 

a method described in [9]. The method is based on the observation that the linear 

controller obtained is designed to operate on the perturbations of the plant’s input and 

outputs about the trimmed condition. Differentiating the measured outputs before they are 

fed to the gains extracts out the perturbations for which the gains are designed to operate 

on. To preserve the input-output behavior of the feedback system, a integrator is inserted 

after the feedback gains are computed. The performance of the LQR controller on the 

non-linear FROG UAV model thus obtained is shown in Figure III.21. 

Integral LQR Controller for FROG UAV
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Figure III.20 Non-Linear LQR Controller Implementation 
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Figure III.21 LQR Controller Performance with Non-linear UAV Model 

a)  Airspeed Change of 12ft/s  b)  Altitude Change of 50 ft 

 c)  Sideslip Velocity of 10 ft/s d)  Heading Change of 0.2 rad 

 

D. CONTROLLER COMPARISON 

Coupling between the longitudinal and lateral control modes was observed on 

both classical inner-loop-outer-loop controller and integral LQR controller. The 

controller response and performance can be analyzed based on the sign convention used 

in [10] and shown in Figure III.22.  
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Figure III.22 ANSI/AIAA Sign Convention for Control Surface Deflection [From 10] 

 

In the aircraft with a classical controller, the aircraft’s response to an altitude 

increase of 20 feet in Figure III.23 shows typical longitudinal mode coupling. The 

controller input a elevator up (negative δe) command to tilt the aircraft nose up 

immediately upon receiving the altitude increase command, airspeed dropped to 85 fps 

and the throttle had to be increased by about 50% above trim level to bring the airspeed 

back to 88 fps. Figure III.24 shows the reverse coupling relation. A step command of +12 

fps sent to the speed controller causes the throttle to open and aircraft to accelerate. As 

the aircraft speeds up, it generates more lift and as a result begins to climb by up to 6 feet. 

The altitude controller immediately commands a positive δe to arrest the climb and 

attempt to return the aircraft to its original altitude. As it returns to the original altitude, 

the throttle input stabilizes at 20% about trim value to maintain the new airspeed. 

Lateral coupling can be observed in Figure III.25. When a step command of +0.2 

radian was input to the heading controller, the controller immediately issued a positive 

aileron control input to bank the aircraft right. The yaw controller simultaneously issued 

negative δr input for the rudder to provide turn coordination as designed. 
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Figure III.23 Classical Controller – Response to Altitude Change of +20 feet 

 
 

 
Figure III.24 Classical Controller - Response to Speed Change of +12 fps 

 
 

 
Figure III.25 Classical Controller - Response to Heading Change of +0.2 rad 
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Similar kind of coupling effects can be observed in the Integral LQR controller. 

However, with full-state feedback, the integral LQR controller is able to minimize the 

coupling effects better. For example, as shown in Figure III.26, although the negative δe 

and positive δthrottle were still issued by the controller to execute the altitude change, the 

throttle input was issued earlier compared to the classical controller and resulted in only 

minimal drop in the aircraft speed as the aircraft climbed to its commanded new altitude. 

The coupling effect on altitude was also much reduced when a speed change was 

commanded. This is shown in Figure III.27. The altitude changed less than 1 feet in the 

integral LQR controller aircraft versus 6 feet in the classical controller aircraft. 

 

 
Figure III.26 LQR Controller – Response to Altitude Change of +20 feet 

 
 

 
Figure III.27 LQR Controller - Response to Speed Change of +12 fps 
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Similarly, the lateral coupling effect is much reduced in the integral LQR 

controller. The coupled altitude increase due to aileron deflection needed to execute the 

heading change was about 0.2 feet in Figure III.28 compared to that of around 1 foot in 

the classical controller aircraft in Figure III.25. 

 

 

 
Figure III.28 LQR Controller - Response to Heading Change of +0.2 rad 

 

In comparison, the LQR controller uses all four control inputs to execute 

commanded changes instead of one control input for each response characteristics as in 

the classical inner-outer loop design. Hence, it is more responsive and more efficient in 

control inputs utilization. For example, comparing Figure III.28 and Figure III.25, the 

aileron and rudder inputs to execute heading change is more than one order smaller in the 

case of the integral LQR. However, the integral LQR structure is based on full-state 

feedback and assumes all the states are measurable and not too noisy. Also, the cross-

coupled nature of the control inputs makes it more difficult to deduce the response of 

each control input in a given flight situation and makes troubleshooting more difficult. 
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IV. NAVIGATION ALGORITHM DESIGN 

This section discusses the development of an infrared vision-based shipboard 

navigation algorithm to determine the position and orientation of an aircraft with respect 

to a ship with three visible points of known separation. It covers the problem formulation 

and includes a simulation example based on the numerical analysis technique proposed in 

[11] to determine the range of an aircraft which is instrumented with an IR camera with 

respect to the ship. The simulation serves as a precursor to explore implementation of an 

autonomous shipboard landing algorithm for the FROG UAV.  

 

A. SHIPBOARD LANDING PROBLEM FORMULATION 

Design of the autonomous shipboard landing algorithm requires first determining 

the range and orientation of the aircraft to a ship which has a minimum of three 

identifiable points. However, using only three reference points (RPs) always results in 

more than one solution as has been shown by a number of researchers of this problem. 

This non-uniqueness is usually resolved at close ranges by using more than three points 

but for the purposes of this study, it was assumed that three reliable points may be 

computed from the location of the smokestack and the extents (width and height) of the 

ship even when the aircraft is sufficiently far from the ship as an input condition to the 

navigation algorithm development. Figure IV.1 shows an example of such a scenario that 

can be used by the algorithm developed. 

 

Figure IV.1 Examples showing images of three RPs 
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Figure IV.2 The 3-point geometry applied to shipboard navigation 

 

Once the image of the three RPs is established, the geometry of the Posed 3-Point 

(P3P) problem to determine the range and orientation of the aircraft’s IR camera with 

respect to the ship in the shipboard autolanding navigation sceneario is shown in Figure 

IV.3 formulates the problem formulation as follows: Let { }iiii zyxp ,,= , 3,...,1=i  

denote the vectors connecting the origin of the camera frame O with the three known 

points iP , 3,...,1=i . Let id , 3,...,1=i  denote distances between these points. Then, 

 

0121 ≠=− dpp , 0231 ≠=− dpp , 0332 ≠=− dpp , 321 ddd ≠≠ ,  (IV.1) 

and ii ps = , 3,...,1=i  denote the norms of the vectors ip . Using the pinhole 

camera model, the projection of each RP onto the image plane of the camera with the 

focal length f has the following form: 

( ) 







=








=

i

i

ii

i
i z

y
x
f

v
u

pπ , 3,...,1=i .    (IV.2) 
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Figure IV.3 Three-point perspective pose estimation problem geometry 

 

Combining equations (IV.1) and (IV.2) result in nine equations with nine 

unknowns { }iii zyx ,, , 3,...,1=i . Using (IV.2), 

f
ux

y ii
i = , 

f
vx

z ii
i = .               (IV.3) 

Substituting these expressions into the (IV.1), equations (IV.2) and (IV.1) can be 

reduced to a set of three nonlinear equations in three unknowns: 
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   (IV.4) 

To simplify the notation, (IV.4) can be re-written as follows 

.2
,2
,2

3
2
33223

2
2

2
2
33113

2
1

1
2
22112

2
1

dCxxxDBx
dCxxxDAx
dBxxxDAx

=+−
=+−
=+−

     (IV.5) 

 

where the coefficients A, B, C, id , 3,...,1=i  are strictly positive by construction. 
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Using (IV.5) one can obtain another system of equations better suited for further 

analysis. First, observe that 

11 s
A
fx = , 22 s

B
fx = , 33 s

C
fx = .            (IV.6) 

 

Rewriting system (IV.5) in terms of is , 3,...,1=i  gives 

,cos2
,cos2
,cos2

2
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2
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2
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2
1

2
2121

2
1
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     (IV.7) 

where ( )
21

21
1

,cos
pp
pp

=α , ( )
31

31
2

,cos
pp
pp

=α , ( )
32

32
3

,cos
pp
pp

=α   (from Figure IV.3) 

 

The system of equations in (IV.7) has an upper bound of eight (2x2x2) real 

solutions. Moreover they form four symmetric pairs, because if a triplet ( )∗∗∗
321 ,, sss  is a 

solution, than the triplet ( )∗∗∗ −−− 321 ,, sss  forms a solution as well. Geometrically, (IV.7) 

can be described as an intersection of three orthogonal elliptic cylinders with the 

semiaxes rotated around corresponding symmetry axes by the angle of 45º. This follows 

directly from the canonical form of equation (IV.7). The magnitudes of the semiaxes for 

each cylinder are equal to 

i

i
ii

dba
αcos1

,
±

= , 3,...,1=i .         (IV.8) 

It is clear that the intersection of any two cylinders is always non-empty and the 

number of solutions in this case is infinite. However, by adding a third cylinder one can 

get only a finite number of intersection points. In practice for the system (IV.7), this 

number cannot be zero or two. Therefore, the only possible set of solutions contains four, 

six or eight points.  
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If Assumption (A1) is made such that camera is always in front of the plane 

defined by three RPs Pi, 3,...,1=i  , the x-component of each vector { }iiii zyxp ,,= , 

3,...,1=i  that satisfies this assumption must be positive (i.e. 0>is , 3,...,1=i ). 

With the substitution in (IV.9) and (IV.10), the system of equations in (IV.7) can 

be reduced to a fourth-order polynomial in 2
is . 

1

2

s
su =∗  and 

1

3

s
s

v =∗               (IV.9) 

112 cosαsus += ∗  and 213 cosαsvs += ∗ ,             (IV.10) 

 
The numerical analysis technique in [11] further showed that with assumptions  
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And from first two equations in (IV.7),  2s  and 3s  can be expressed as: 

( ) ( )2
1

2
1

2
1111 coscos −−− −−±= iiii dssss αα , 3,2=i .    (IV.12) 

 

With the consequence that all possible solutions for 1s that satisfies assumptions A1-A3 is 

bounded by the interval:  
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B. AIRCRAFT-SHIP ORIENTATION DETERMINATION  

Based on the analysis presented in [11], the following algorithm was applied to 

solve the P3P. Suppose a good initial guess of )0(n  the normal to the plane generated by 

the three points is available, then for step k: 

i) Solve numerically equation (IV.10) for )(
1

kx  in the interval equation (IV.13), using 

)1(
1

−kx  as an initial guess; 

112 cosαsus += ∗  and 213 cosαsvs += ∗ ,            (IV.10) 
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ii) substitute each solution )(
1

kx  obtained in i) into (IV.3) to get )(
1_

ˆ k
ip  and )(
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ˆ k

ip ; 

f
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iii) compute normals 
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iv) choose set )(
1_

ˆ k
ip , 3,1=i  or )(

2_
ˆ k

ip , 3,1=i  that maximizes the dot product 

)1()( , −kk nn . 

 

Using the solution provided by the P3P algorithm the relative orientation of the 

aircraft with respect to the plane formed by the three RP’s can be computed as follows:  

Let {3p} denotes an orthogonal coordinate system attached to the plane generated 

by the three RP’s, let {c} denotes the coordinate system attached to the camera and let 
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Rc
p3  be the coordinate transformation from {3p} to {c}. Form three orthogonal vectors 1r , 

2r , 3r  using the correct solution 1p̂ , 2p̂ , 3p̂  as follows: 

12

12
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pp
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−
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Then [ ]3213 rrrRc
p = . 

But from geometry, the transformation matrix Rc
p3  can also be expressed using Euler 

angles as: 
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 (IV.15) 

where p3ψ , p3θ , p3φ  are yaw, pitch and bank angles, respectively, with respect to 

the plane formed by the three RP’s. Therefore, the Euler angles can be found in the 

following manner: 

11

12
3 arctan

r
r

p =ψ , 133 arcsin rp −=θ , 
33

23
3 arctan

r
r

p =φ .   (IV.16) 

In general, the coordinate system {3p} does not coincide with the inertial 

coordinate system {i}. Therefore, the attitude {c} of the camera with respect to {i} can be 

found using (IV.16)from the transformation matrix RR p
i

c
p

3
3 , where Rp

i
3  can be obtained 

from the known positions of the three RP’s in {i}, using the same manner. 

 

C. ALGORITHM SIMULATION  

The P3P algorithm developed above was applied to determine the range of the 

aircraft with respect to the ship in a simulation example described below.. The ship is 

moving North at a constant speed of 10m/s. Its motion is characterized by pitch and heave 

oscillations with a period of 12sec. The aircraft is performing a left turn with descent 

from the initial point (-1450, -200, 470)m with respect to the ship’s initial position at an 
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airspeed of 53m/s. The camera's focal length is mf 1.0=  and declination angle with 

respect to a/c longitudinal axis is -6deg. The errors in the projection of each RP onto the 

image plane of the camera are modeled as independent Gaussian random process with 

zero mean and standard deviation of one pixel. 

Figure IV.4 shows the horizontal projection of each of the three RP’s on the ship 

tracked by the camera and of the aircraft’s motion. Figure IV.5 gives the corresponding 

3D representation.  

 

Figure IV.4 Horizontal projection of a/c’s and ship’s motion 

 

 

Figure IV.5 3D representation of the simulation scenario 

 

In summary, simulation results shows that the proposed algorithm is a feasible 

method of implementing flight navigation and trajectory tracking in order to adopt certain 

flight profiles at various stages of the mission. This can be further demonstrated on the 

FROG UAV test-bed in the near future. 
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V. GROUND TEST RESULTS 

To test capability of the computer in capturing GPS, IMU and PWM data on 

aircraft in the same manner it would operate in flight, a full system verification test was 

conducted at the UAV Lab. All the aircraft equipment and the newly installed miniature 

computer were powered from an internal battery. A floppy was used to boot up the xPC 

operating kernel and then removed for the UAV nose fairing to be installed. The data 

collection application was ‘built’ on the Host PC and uploaded to the aircraft’s computer 

via wireless serial modem. Commands to start and stop data collection were issued from 

the Host PC remotely. The engine was started on several tests to check for 

electromagnetic interference (EMI) on data transfer and to assure pilot control capability 

from various distances. 

 

A. DATA ANALYSIS 

The ground test proved that the aircraft computer was able to correctly collect and 

interpret the data from various instruments. The GPS, IMU, PWM and A/D data captured 

on a particular data collection test is presented in the next few pages. Figure V.1 to V.9 

show the plots of GPS RMC and GGA data captured when the UAV was moved in a 

triangular path of approximately South-West, followed by East, followed by North in 

front of the UAV Lab.  

1. GPS Signals 

From the GPS RMC data captured, Figure V.1 shows the correct UTC, while 

Figures V.2 and V.3 show the latitude and longitude of Monterey airport area where the 

test was conducted. The data in Figures V.2 and V.3 was combined and re-presented in 

ground coordinates to show the path taken by the aircraft while data capturing was in 

progress. This is shown in Figure V.4 together with the bearing (215°, followed by 80°, 

followed by 350°) the UAV had taken along the path. Figure V.5 shows the ground speed 

at which the UAV was moved around the path and the date of the test (i.e. 13/03/02). 
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Figure V.6 shows the magnetic variation in degrees and the direction of magnetic north 

and true north. 

 

Figure V.1 GPS RMC UTC (left) and RMC Status (right) 

 
 

 
Figure V.2 GPS RMC Lattitude (left) and Latitude Direction (right) 

 
 

 
Figure V.3 GPS RMC Longitude (left) and Longitude Direction (right) 

> [ t(35:55),RMC_ RMC_UTC(35:55)]
 
   0. 0975    181853.00 
   0. 1000    181853.00 
   0. 1025    181853.00 
   0. 1050    181853.00 
   0. 1075    181853.00 
   0. 1100    181853.00 
   0. 1125    181853.00 
   0. 1150    181853.00 
   0. 1175    181854.00 
   0. 1200    181854.00 
   0. 1225    181854.00 
   0. 1250    181854.00 
   0. 1275    181854.00 
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Figure V.4 Position Plot From RMC data (left) and GPS RMC Track (right) 

 
 

 
Figure V.5 GPS RMC Ground Speed (left) and dd/mm/yy (right) 

 
 

 
Figure V.6 GPS RMC Magnetic Variation (left) and MV Angle (right) 
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The GPS GGA sentence provides data complementary to the GPS RMC sentence 

for navigation purposes. Figures V.7 shows the UTC time in the hh.mm.ss.ss format and 

the number of satellites in use. Figure V.8 demonstrates a clear correspondence to the 

data in Figure V.7 (right) and shows that the horizontal dilution of precision increased to 

around 2.0 when the number of available satellites in sight decreased from 5 to 4, and to 

3.6 when the number of available satellites dropped further to 3. Figure V.9 shows the 

altitude of antenna in meters above mean sea-level. 

 

 
Figure V.7 GPS GGA UTC (left) and Number of Satellite Vehicles Used (right) 

 

 
Figure V.8 GPS GGA Fix Quality (left) and HDOP (right) 
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Figure V.9 GPS GGA Antenna Height (left) and DGPS Data Age (right) 

 

2. A/D and PWM Signals 

The voltages of the control surfaces and throttle servos captured by the A/D signal 

are presented together with the corresponding PWM commands received by the Futaba® 

receiver in Figures V.10 to V.13. Each pair of figures clearly shows servos responding to 

the commands issued to it. While the A/D measured signals are almost noise-free, the 

PWM signals captured showed data drop-outs occasionally over a period of 5 to 10 

seconds. As such, some form of filtering needs to be implemented if the PWM captured 

data is required. In our case, this does not pose a serious concern as the PWM signal 

captured is not used for flight control processing. Rather, it is measured to record the 

commands sent to the Futaba® receivers and correlate with how the aircraft responds 

when the Futaba® controller is used. 

 

 
Figure V.10 Aileron and Elevator Servo Voltages measured by A/D 
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Figure V.11 PWM Commands Issued to Aileron and Elevator Servos 

 
 

 
Figure V.12 Rudder and Throttle Servo Voltages measured by A/D 

 
 

 
Figure V.13 PWM Commands Issued to Rudder and Throttle 
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3. Crossbow Signals 

The signals from the Crossbow IMU were captured on another ground test after 

Crossbow IMU was initialized. They are presented as time-plots in Figure V.14. The path 

taken as the UAV was pushed on its landing gear around the NPS UAV Lab is given in 

the first plot. The ± 2° roll angle measured is in-line with the manner in which the body 

of the aircraft tilts as it moves along its path, except when it reached the slightly sloped 

turnaround point when the left-wing was slightly lower as the aircraft turns. The effect of 

the slight ground slope near the turnaround point was evident in the pitch angle plot. The 

pitch angle increases from 0 to 7° as the aircraft slowly moves up the slope and changes 

to –7° as it turns back. The longitude versus latitude plot shows the aircraft initially 

veered right with respect to its initial heading as it moves away from the UAV Lab. It  

subsequently turned left for some distance before making an about turn. This is clearly 

reflected in the Psi (heading) data measured by Crossbow. 
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The angular rates and linear accelerations recorded by the Crossbow are more 

‘noisy’ but still correlate well with the FROG UAV’s motion. Roll rate and pitch rate 

fluctuate around zero as the UAV moves around since the landing gear introduces 

vibration to the Crossbow. In the yaw-rate data captured, the about-turn at about 70 

seconds correspondent to the left turn the aircraft had to take. The acceleration in the z-

axis shows +1g due to gravity as expected. 

 

 

 

 
Figure V.14 Crossbow IMU Signals 
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B. EMI ISSUES 

Despite successful demonstration of sensor data capture and interpretation on the 

new onboard computer, the ground tests revealed two communication related problems in 

the setup. The first was that data downlink from Target PC to Host PC via the Freewave® 

modems was intermittent. The xPC real-time operating system would display a “COM 

failure” message on the Host PC during some downloads. The second was that during 

data downloading, the aircraft control surfaces respond to commands sent from the 

Futaba® remote control with significant delay. This is unacceptable as it can result in a 

total loss of control when emergency pilot mode of control is used. Both problems occur 

only when the wireless modem is used in place of a direct null-modem cable between the 

Host PC and Target PC. 

Initial investigations explored the effect of changing some of the modem’s 

transmission parameters such as maximum data packet size, minimum data packet size, 

power setting, the transmission frequency and baud rate but failed to resolve the 

occasional COM failure problem that occurred during data download. Subsequent 

investigations narrowed down to electromagnetic interference (EMI) generated on the 

aircraft and serial communication data latency timings as possible causes.  

The first assessment resulted from the observation that upload of application 

programs and commands to the aircraft computer did not encounter transmission 

problems when radio signals were sent to the onboard modem. However, during the 

downloading of recorded flight data, when the onboard modem was transmitting, EMI 

from cables onboard the aircraft can corrupt the transmitted data and result in 

transmission errors. This hypothesis was supported by absence of communication failure 

when the PWM capture cable was removed.  

Another possible cause could be the delay time the xPC operating kernel expects 

data to be available on the serial link during transmission. This may introduce 

communication failure in the xPC software depending on how much latency time the xPC 

operating kernel would accommodate. In a direct cable link, such a problem does not 

arise as the cable is always connected and does not require transmission handshaking as 

in the wireless modems. 
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The freezing of control surface response on the aircraft when the onboard modem 

is transmitting could be due to the interference of the modem transmission on the Futaba® 

receiver.  
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

In support of the research objective on coordination and control of a cluster of 

UAVs, a miniature computer critical for onboard real-time data processing in order to 

execute autonomous guidance and control of aircraft was constructed and installed on the 

FROG UAV in this project. In contrast to the original setup where flight and navigation 

data had to be transmitted to a computer on the ground for processing and control 

commands computation before being re-transmitted back to the aircraft for control 

execution, the new onboard computer integrates all the sensor data for control and 

guidance commands computation on the aircraft. This reduces sensor data processing 

time from 25 milliseconds (at 40 Hz downlink data rate) by 2 orders of magnitude to 

around 350 microseconds. It would also reduce control commands execution time to tens 

of microseconds given the computer generates PWM signals to control the servos directly 

as compared to 160 milliseconds in the current setup. The presence of an onboard 

computer also provides the computational capability to implement data processing for 

more advanced research activities in the future. To date, the computer and all software 

drivers written to interface with various onboard instruments have been tested.  

Additionally, a new 6-DOF model of the FROG UAV has been developed in 

Simulink. This will facilitate future simulation of the control and guidance algorithm for 

the FROG UAV. As part of this thesis, two possible autopilot designs – one using 

classical control techniques and one using modern control theory – have also been 

designed for the UAV. A vision-based navigation algorithm for the FROG UAV has also 

been demonstrated in software simulation. These control and navigation algorithms can 

be hardware-in-the-loop tested using available facilities at NPS before verification flights 

in the near future. 

The use of the newly marketed xPC rapid prototyping system in this project 

greatly expedited the development and implementation of the desired control setup. A 

thorough understanding of the capabilities and ways to overcome its shortcomings has 

resulted from this project. The expertise accumulated will be useful for many projects at 



 76

NPS, not just in the Aeronautics Department, since the rapid prototyping approach can be 

applied to shorten the design-to-full-system testing timeframe of any conceivable system 

being developed. 

 

B. RECOMMENDATIONS 

With the software for navigation and flight data processing on the aircraft fully 

verified, the only remaining obstacle preventing a flight test pertains to the wireless 

communication EMI issue. The following can be pursued in the near future.  

1. Measure the signal-to-noise level and the signal power level during the uplink and the 

downlink to quantify the signal power required and the noise limits the control setup 

can accommodate. 

2. Determine the components causing EMI and introduce EMI filters accordingly to 

remove or reduce the EMI on the aircraft.  

3. Consult Mathworks, Inc on the serial communication latency time the xPC operating 

kernel can accept and find a way to change this parameter in the xPC operating kernel 

to accommodate any delay in the serial modem transmission.  

4. Explore the use of a wireless Ethernet link in avoiding the interference on the 

downlink transmission. A wireless Ethernet link can also reduce massive flight data 

download times by 1 to 2 orders of magnitude. 
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APPENDIX A. DESCRIPTION OF FROG UAV 
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APPENDIX B. AIRBORNE COMPUTER I/O INTERFACE  

The hardware setting for the miniature computer and various I/O boards that was 

built for the UAV is given in the sections below. Similar information from the original 

AC-104 computer is also given in case the miniature computer needs to be re-configured 

back to the AC-104 configuration. 

 
1. I/O ADDRESS  

The I/O addresses of resources in the new miniature computer are shown in Table 

B.1.  The I/O resource addresses for the original AC-104 is also shown as reference. 
 

AC-104 Computer Base Address  
(Offset) New Computer 

IDE hard disk interface  0x1F0  Not Installed 
Reserved 0x1F8  Not Installed 
Ruby-MM  
8 Channel D/A, 24 Chan. Dig. I/O  0x200 (0x40)  Removed 

AIM/16-1 16 
Channel A/D, 16 Chan. Dig. I/O  0x280 (0x20)  AIM/16-1 

Serial Port Number 4 (ET Models Only)  0x2E8  COM4 
Reserved 0x2F0  Not Installed 
Serial Port Number 2  0x2F8  COM2 
Flex/104 IP Carrier Board 1  0x300  Removed 
Pause and Error Light Control Register  0x310  Available. Not Used 
Flex/104 IP Carrier Board 2  0x320  Not Installed 
M-Systems 4MB Flash Disk  0x330  4MB Flash Disk 
Ruby-MM-16  
16-channel D/A (optional)  0x340  Not Installed 

NAI-5718 Synchro/Resolver Board  0x355  Not Installed 
Flex/104 IP Carrier Board 3  0x360  Not Installed 
Multimode Parallel Port (when enabled)  0x378  Available. Not Used 
Ethernet 0x380  Ethernet 
Monochrome display adapter  0x3B0  Not Installed 
Flat Panel/CRT VGA display adapter  0x3C0  VGA Display 
Video Controller  0x3D0  Video Controller 
Serial Port Number 3 (ET models only)  0x3E8  COM3 
Reserved  0x3F0  Not Installed 
Floppy disk controller ports  0x3F2  Floppy disk controller 
Serial Port Number 1  0x3F8  0x08 

 0x210 QMM-10 Timer/Counter  
(for PWM capture) 

 0x240 QMM-5 Timer Counter 
(for PWM generation) 

Table B.1 I/O Resource Addresses 
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2. I/O BOARD PIN OUT CONNECTION AND USAGE  

The pin utilization for the I/O cards installed in the miniature computer is given in 

the Tables B.2, B.3 and B.4 below. Bold items indicated connected lines. 

 
AC104 Signal Board Board Signal AC104

1 In 1 1 2 In 2 26 

2 Gate 1 3 4 Gate 2 27 

3 Out 1 ( PWM1 out) 5 6 Out 2 (PWM2 out) 28 

4 In 3 7 8 In 4 29 

5 Gate 3 9 10 Gate 4 30 

6 Out 3 (PWM3 out) 11 12 Out 4 (PWM4 out) 31 

7 In 5 13 14 Out 5 32 

8 Gate 5 15 16 Frequency Output 33 

9 NC 17 18 NC 34 

10 NC 19 20 NC 35 

11 NC 21 22 NC 36 

12 NC 23 24 NC 37 

13 NC 25 26 NC 38 

14 NC 27 28 NC 39 

15 NC 29 30 NC 40 

16 NC 31 32 Interrupt Input 41 

17 Digital Out 7 33 34 Digital In 7 42 

18 Digital Out 6 35 36 Digital In 6 43 

19 Digital Out 5 37 38 Digital In 5 44 

20 Digital Out 4 39 40 Digital In 4 45 

21 Digital Out 3 41 42 Digital In 3 26 

22 Digital Out 2 43 44 Digital In 2 27 

23 Digital Out 1 45 46 Digital In 1 28 

24 Digital Out 0 47 48 Digital In 0 29 

25 +5V 49 50 Ground 50 

Table B.2 QMM-5 (PWM Generation) Pin Interface  
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AC104 Signal Board Board Signal AC104 

1 In 1 1 2 In 2 26 

2 Gate 1 (PWM1 In) 3 4 Gate 2 (PWM1 In) 27 

3 Out 1 5 6 Out 2 28 

4 In 3 7 8 In 4 29 

5 Gate 3 (PWM2 In) 9 10 Gate 4 (PWM2 In) 30 

6 Out 3 11 12 Out 4 31 

7 In 5 13 14 Out 5 32 

8 Gate 5 15 16 Frequency Output 33 

9 In 6 17 18 In 7 34 

10 Gate 6  (PWM3 In) 19 20 Gate 7  (PWM3 In) 35 

11 Out 6 21 22 Out 7 36 

12 In 8 23 24 In 9 37 

13 Gate 8 (PWM4 In) 25 26 Gate 9 (PWM4 In) 38 

14 Out 8 27 28 Out 9 39 

15 In 10 29 30 Out 10 40 

16 Gate 10 31 32 Interrupt Input 41 

17 Digital Out 7 33 34 Digital In 7 42 

18 Digital Out 6 35 36 Digital In 6 43 

19 Digital Out 5 37 38 Digital In 5 44 

20 Digital Out 4 39 40 Digital In 4 45 

21 Digital Out 3 41 42 Digital In 3 26 

22 Digital Out 2 43 44 Digital In 2 27 

23 Digital Out 1 45 46 Digital In 1 28 

24 Digital Out 0 47 48 Digital In 0 29 

25 +5V 49 50 Ground 50 

Table B.3 QMM-10 (PWM Capture) Pin Interface 

 



 82

 
AC104 Signal Board Board Signal AC104 

1  Analog Ground  1  2 V reference (5V) 26  

2  Analog In Ch 1 Hi  
(Servo Pot 1 Hi) 3  4 Analog In Ch 1 Lo  

(Servo Pot 1 Lo) 
27 

3  Analog In Ch 2 Hi  
(Servo Pot 2 Hi) 5  6 Analog In Ch 2 Lo 

(Servo Pot 2 Lo) 
28  

4  Analog In Ch 3 Hi  
(Servo Pot 3 Hi) 7  8 Analog In Ch 3 Lo 

(Servo Pot 3 Lo) 
29  

5  Analog In Ch 4 Hi  
(Servo Pot 4 Hi) 9  10 Analog In Ch 4 Lo 

(Servo Pot 4 Lo) 
30  

6  Analog In Ch 5 Hi  11  12 Analog In Ch 5 Lo 31  

7  Analog In Ch 6 Hi  13  14 Analog In Ch 6 Lo 32  

8  Analog In Ch 7 Hi  15  16 Analog In Ch 7 Lo 33  

9  Analog In Ch 8 Hi  17  18 Analog In Ch 8 Lo 34  

10  Analog Ground  19  20 +15V  35  

11  -15V  21  22 Digital I/O Ground 36  

12  Digital I/O Ch 1  23  24 Digital I/O Ch 2 37  

13  Digital I/O Ch 3  25  26 Digital I/O Ch 4  38  

14  Digital I/O Ch 5  27  28 Digital I/O Ch 6  39  

15  Digital I/O Ch 7  29  30 Digital I/O Ch 8  40  

16  Digital I/O Ch 9  31  32 Digital I/O Ch 10  41  

17  Digital I/O Ch 11  33  34 Digital I/O Ch 12  42  

18  Digital I/O Ch 13  35  36 Digital I/O Ch 14  43  

19  Digital I/O Ch 15  37  38 Digital I/O Ch 16  44  

20  External Trigger  39  40 Digital I/O Ground  45  

NOTE: Channels 21-25 and 46-50 are not connected on the AC-104 front panel 
 

Table B.4 AIM16 (Servo Pots & Differential Pressure Sensor) Pin Interface 
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3. INTERRUPT ROUTINE (IRQ) ASSIGNMENT 

The interrupt routine vector addresses for the new miniature computer is given in 

Table B.5. The IRQ assignment for the original AC-104 computer is also shown as 

reference should the miniature computer needs to be re-configured back to the original 

AC-104 configuration. 

 
IRQ AC-104 I/O Resource  New I/O Resource 

IRQ0 ROM BIOS clock tick function  Same 

IRQ1 Keyboard Same 

IRQ2 Cascaded inputs from IRQs 8 - 15  QMM-5 

IRQ3 Serial Ports 2 (and 4, for ET models only)  COM2 

IRQ4 Serial Ports 1 (and 3, for ET models only)  COM1 

IRQ5 LPT2 or Flex/104 IP Carrier Board 3  COM4 

IRQ6 Floppy drive controller  Same 

IRQ7 Parallel Port or optional AX-10425 
frequency driver  

QMM-10 

IRQ8 Watchdog timer and error handling  Same 

IRQ9 Ethernet  Same 

IRQ10 Controller pause function  COM3 

IRQ11 Flex/104 IP Carrier Board 1  Removed 

IRQ12 Not Used  Same 

IRQ13 Reserved for co-processor (not used)  Same 

IRQ14 IDE hard disk controller  Same 

IRQ15 Flex/104 IP Carrier Board 2  Same 

Table B.5 IRQ Assignment 
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APPENDIX C. SOFTWARE DRIVERS & LQR DESIGN CODE  

This appendix contains the “C” source code written to receive and decode the data 

streams from the Ag132 GPS receiver and the Crossbow AHRS400CA-100 serving as 

the IMU. The IMU and GPS interface drivers were written by the author for this project 

while the GPS messages decoding routines were written by Dr. Vladimir Dobrokhodov 

for a previous project. All the C-codes had to be packaged into MATLAB’s S-Function 

Level 2 structure which adopts a specific sequence to initialize a simulation block, update 

its states, control sampling rates, output data and terminate the function.  Each set of code 

has to be “mex” by a compatible C-compiler in MATLAB and ‘build’ into executable 

code by xPC’s Real-Time Workshop before it can be called from within a Simulink block 

as a S-Function. Details of how this is done are discussed in Refs  [12] and [13]. 

 

1. CROSSBOW AHRS DATA RECEIVE DRIVER 

/*---------------------------------------------------------------------------------- */ 
/*  CROSSBOW AHRS Interface Driver         */ 
/*  This routine is a modification of the rs232brec.c routine from Mathworks.        */ 
/*  Function: Receive undelimited RS232 bytes from Crossbow AHRS.                   */ 
/*  Implements a two-buffer system to collect all available data   */ 
/*   Search for Crossbow header byte, test if checksum of next X-1 bytes   */ 
/*  tally with checksum byte. If so, valid Crossbow message. Output.      */ 
/*  If not adequate bytes to form new message, exit with last message   */ 
/*  X = width of Crossbow message specified by user in block's mask       */ 
/*  Jan 18, 2002                                                                     */ 
/*  Filename:  xbowrcv1p3.c          */ 
/*  Written by:  Bock-Aeng Lim                                                       */ 
/*----------------------------------------------------------------------------------*/ 
/* Original Source file comments: 
/* $Revision: 1.1 $ $Date: 2001/07/20 22:11:41 $ */ 
/* rs232rec.c - xPC Target, non-inlined S-function driver for RS-232 receive (asyn)  */ 
/* Copyright 1996-2001 The MathWorks, Inc. 
*/ 
 
#define S_FUNCTION_LEVEL 2 
#undef S_FUNCTION_NAME 
#define S_FUNCTION_NAME xbowrcv1p3 
 
#include <stddef.h> 
#include <stdlib.h> 
 
#include "tmwtypes.h" 
#include "simstruc.h" 
 
#ifdef MATLAB_MEX_FILE 
#include "mex.h" 
#else 
#include <windows.h> 
#include <string.h> 
#include "rs232_xpcimport.h" 
#include "time_xpcimport.h" 
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#endif 
 
/* Input Arguments from Simulink block's user mask */ 
#define NUMBER_OF_ARGS          (3) 
#define PORT_ARG                ssGetSFcnParam(S,0) /* COM port to use */ 
#define WIDTH_ARG               ssGetSFcnParam(S,1) /* max width */ 
#define SAMP_TIME_ARG           ssGetSFcnParam(S,2) /* User specified sample time */ 
 
#define NO_I_WORKS              (3)     /* current pos pointer in buf, rec length, 
bufCount */ 
#define NO_R_WORKS              (0) 
#define NO_P_WORKS              (0) 
#define NO_D_WORKS              (1)  /* for buf array */ 
 
#define HEADER     255  /* Crossbow message header byte  */ 
 
static char_T msg[256]; 
extern int rs232ports[]; 
 
 
static void mdlInitializeSizes(SimStruct *S) 
{ 
#ifndef MATLAB_MEX_FILE 
#include "rs232_xpcimport.c" 
#include "time_xpcimport.c" 
#endif 
 
    ssSetNumSFcnParams(S, NUMBER_OF_ARGS); 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        sprintf(msg,"Wrong number of input arguments passed.\n" 
                "%d arguments are expected\n",NUMBER_OF_ARGS); 
        ssSetErrorStatus(S,msg); 
        return; 
    } 
 
 
    /* Set-up size information */ 
    ssSetNumContStates( S, 0); 
    ssSetNumDiscStates( S, 0); 
    ssSetNumOutputPorts(S, 2);          /* data, "done pulse" */ 
    ssSetNumInputPorts( S, 2);          /* rec length, enable */ 
 
    ssSetOutputPortWidth(S, 0, 1);    /* Function-call */ 
 
    ssSetOutputPortWidth(S, 1, (int)mxGetPr(WIDTH_ARG)[0]); 
    ssSetOutputPortDataType(S, 1, SS_UINT8); 
 
    ssSetInputPortDirectFeedThrough(S, 0, 1); 
    ssSetInputPortDirectFeedThrough(S, 1, 1); 
    ssSetInputPortWidth(            S, 0, 1); 
    ssSetInputPortWidth(            S, 1, 1); 
 
    ssSetInputPortRequiredContiguous(S, 0, 1); 
    ssSetInputPortRequiredContiguous(S, 1, 1); 
 
    ssSetNumSampleTimes(S,1); 
    ssSetNumIWork(S, NO_I_WORKS); 
    ssSetNumRWork(S, NO_R_WORKS); 
    ssSetNumPWork(S, NO_P_WORKS); 
    ssSetNumDWork(S, NO_D_WORKS); 
 
    ssSetDWorkDataType(S, 0, SS_UINT8); 

ssSetDWorkWidth(   S, 0, (int)mxGetPr(WIDTH_ARG)[0]); 
    ssSetDWorkWidth(   S, 0, 2048); 
 
 
    ssSetNumModes(         S, 0); 
    ssSetNumNonsampledZCs( S, 0); 
 
    ssSetSFcnParamNotTunable(S,0); 
    ssSetSFcnParamNotTunable(S,1); 
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    ssSetSFcnParamNotTunable(S,2); 
 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | SS_OPTION_PLACE_ASAP); 
} 
 
/* Function to initialize sample times */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, mxGetPr(SAMP_TIME_ARG)[0]); 
    if (mxGetN((SAMP_TIME_ARG))==1) { 
        ssSetOffsetTime(S, 0, 0.0); 
    } else { 
        ssSetOffsetTime(S, 0, mxGetPr(SAMP_TIME_ARG)[1]); 
    } 
    ssSetCallSystemOutput(S, 0); 
} 
 
#define MDL_START  /* Change to #undef to remove function */ 
#if defined(MDL_START) 
static void mdlStart(SimStruct *S) 
{ 
#ifndef MATLAB_MEX_FILE 
 
    ssGetIWork(S)[0] = 0; /* set current buf pointer = 0 */ 
    ssGetIWork(S)[2] = 0; /* set bufCount = 0 */ 
 
#endif 
} 
#endif 
 
 
/* Function to compute outputs */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
#ifndef MATLAB_MEX_FILE 
    int width   = (int)mxGetPr(WIDTH_ARG)[0];   /* specify output port width   */ 
    int port    = (int)mxGetPr(PORT_ARG )[0] - 1; /* specify COM# */ 
    unsigned char tmp;         /* temp char holder */  
    unsigned char *buf = (unsigned char *)ssGetDWork(S, 0); /* uchar buffer to contain 

bytes from serial port*/ 
    int *current   = ssGetIWork(S);/* current = addr of current position pointer in buf */ 
    int *recLength = ssGetIWork(S) + 1;    /* recLength = addr of receieved data length */ 
    int *bufCount = ssGetIWork(S)+ 2;      /* count number of useful bytes in buf. */ 
    int  serbufCount;  /* count number of useful bytes collected in Serial buf*/ 
    int  HeaderFound, i, j, bufStop, sumbytes, chksum; 
    int  nextbytetoprocess, lastHeaderPos, EOB; 
 
 
 

if (ssGetInputPortRealSignal(S, 1)[0] == 0) /* function is disabled. Stop 
processing and get out */ 

return; 
         
 
 
    serbufCount = rl32eReceiveBufferCount(port);    /* Check number of bytes available */ 
 
    while (serbufCount) {   /* transfer everything in serial buffer to buf */ 
        tmp = rl32eReceiveChar(port); 
        if ((tmp & 0xff00) != 0) {  /* only last 8 bits can be non-zero */ 
            printf("RS232Receive Error: char & 0xff00 != 0 \n"); 
            return; 
        } 
 
  buf[(*current)++] = tmp & 0xff;  /* put valid char into buf */ 
        serbufCount--;     /* reduce serbufCount */ 
 (*bufCount)++;    /* increase bufCount correspondingly */ 
    } 
 
 
// FROM HERE, IMPLEMEMT CHECKSUM COMPUTATION & TRANSFER DECODED MESSAGE TO OUTPUT  
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 HeaderFound = 0; 
 i = 0; 
 EOB = 0; 
 
 if (*bufCount<30) return; // Not enough bytes to decode, output old value 
   
 while (HeaderFound==0) { 
                 
   /* find Header byte */ 
   while (buf[i] != HEADER) {  
    if (i < *bufCount) i++; 
    else {EOB = 1;  
    break;} 
   } /* at exit, buf[i] = HEADER or EOB =1 */ 
                 
 
   if (EOB == 1) { 
    nextbytetoprocess = lastHeaderPos; 
    break; 
   } 
 
 
   if (*bufCount - i < width-1) { 
    nextbytetoprocess = i; 
    break; 
   }  
   else { 
    sumbytes = 0;    /* Compute checksum */ 
    for (j=1;j<width-1;j++) { 
    sumbytes = sumbytes + buf[i+j]; 
    } 
    chksum = sumbytes % 256; 
 
    if  (chksum == buf[i+width-1]) {            
            HeaderFound = 1; 
       memcpy(ssGetOutputPortSignal(S,1),buf+i,width); 
      nextbytetoprocess = i + width; 
    } // if checksum tally 
    else { // checksum doesn't tally 
     lastHeaderPos = i; 
     i++;  //skip current FF, find next FF 
     } 
   } //else 
 } /* while HeaderFound = 0*/        
 
         
  if (*bufCount>100) { //BufCount large, too many old bytes, flush buffer 
   *bufCount = 0; 
   *current = *bufCount; 
  }  
  else { // Pack useful bytes in buf to front of buf for next routine call  
    bufStop = *bufCount; // bufStop = no. of bytes in pre-packed buf 

  *bufCount = *bufCount - nextbytetoprocess;  // bufCount = no. of  
bytes after packing 

    i = 0; 
    for (j=nextbytetoprocess;j<bufStop;j++) { 
     buf[i] = buf[j]; 
     i++; 
    } 
    *current = *bufCount; // update pointer to end of buf  
  } 
 
        ssCallSystemWithTid(S, 0, 0); /* issue done pulse to outport 0 */ 
 
    return; 
 
#endif 
} 
 
/* Function to perform housekeeping at execution termination */ 
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static void mdlTerminate(SimStruct *S) 
{ 
} 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 
 
 

2. GPS DATA RECEIVE DRIVER 

/*---------------------------------------------------------------------------------- */ 
/*  TRIMBLE GPS Interface Driver          */ 
/*  This routine is a modification of the rs232brec.c routine from Mathworks.        */ 
/*  Function: Receive undelimited RS232 bytes from Ag132 GPS. Search for sentence    */ 
/*  header '$'. Compute checksum for next 5 bytes to determine if sentence*/ 
/*  is 'GPGGA' or 'GPRMC'. Form message, output message at Port1 in       */ 
/*  X byte width, output Header Index at Port2 to identify 'GPGGA'        */ 
/*  or 'GPRMC' for follow-on processing.       */ 
/*  X = is max width of message specified by user in block's mask         */ 
/*  Original Feb 1, 2002                                                             */ 
/*  Revised  Mar 11, 2002          */ 
/*  Filename:  gpsrcv.c          */ 
/*  Written by:  Bock-Aeng Lim and Dr. Vladimir Dobohodkov       */ 
/*---------------------------------------------------------------------------------- */ 
/* Original comments: 
/* $Revision: 1.1 $ $Date: 2001/07/20 22:11:41 $ */ 
/* rs232rec.c - xPC Target, non-inlined S-function driver for RS-232 receive */ 
 
#define S_FUNCTION_LEVEL 2 
#undef S_FUNCTION_NAME 
#define S_FUNCTION_NAME gpsrcv 
 
#include <stddef.h> 
#include <stdlib.h> 
 
#include "tmwtypes.h" 
#include "simstruc.h" 
 
#ifdef MATLAB_MEX_FILE 
#include "mex.h" 
#else 
#include <windows.h> 
#include <string.h> 
#include "rs232_xpcimport.h" 
#include "time_xpcimport.h" 
#endif 
 
/* Input Arguments */ 
#define NUMBER_OF_ARGS          (3) 
#define PORT_ARG                ssGetSFcnParam(S,0) 
#define WIDTH_ARG               ssGetSFcnParam(S,1) /* max width is the max length of GPS 
sentence */ 
#define SAMP_TIME_ARG           ssGetSFcnParam(S,2) 
 
#define NO_I_WORKS              (3)     /* current pos ptr in buf, rec length, bufCount*/ 
#define NO_R_WORKS              (0) 
#define NO_P_WORKS              (0) 
#define NO_D_WORKS              (1)  /* for buf array */ 
 
#define HEADER     (36) // $- sign 
 
static char_T msg[256]; 
extern int rs232ports[]; 
 
// unsigned char* gl_buf; global variable to save captured bytes between sample steps 
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static void mdlInitializeSizes(SimStruct *S) 
{ 
#ifndef MATLAB_MEX_FILE 
#include "rs232_xpcimport.c" 
#include "time_xpcimport.c" 
#endif 
 
    ssSetNumSFcnParams(S, NUMBER_OF_ARGS); 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        sprintf(msg,"Wrong number of input arguments passed.\n" 
                "%d arguments are expected\n",NUMBER_OF_ARGS); 
        ssSetErrorStatus(S,msg); 
        return; 
    } 
 
 
    /* Set-up size information */ 
    ssSetNumContStates( S, 0); 
    ssSetNumDiscStates( S, 0); 
    ssSetNumOutputPorts(S, 3);          /* fuc-call,data, header ind */ 
    ssSetNumInputPorts( S, 2);          /* rec length, enable */ 
 
    ssSetOutputPortWidth(S, 0, 1);  /* Function-call */ 
 
    ssSetOutputPortWidth(S, 1, (int)mxGetPr(WIDTH_ARG)[0]);/* Data */ 
    ssSetOutputPortDataType(S, 1, SS_UINT8); 
 
    ssSetOutputPortWidth(S, 2, 1);  /* Header index */ 
    ssSetOutputPortDataType(S, 2, SS_UINT8); 
 
    ssSetInputPortDirectFeedThrough(S, 0, 1); 
    ssSetInputPortDirectFeedThrough(S, 1, 1); 
    ssSetInputPortWidth(            S, 0, 1); 
    ssSetInputPortWidth(            S, 1, 1); 
 
    ssSetInputPortRequiredContiguous(S, 0, 1); 
    ssSetInputPortRequiredContiguous(S, 1, 1); 
 
    ssSetNumSampleTimes(S,1); 
    ssSetNumIWork(S, NO_I_WORKS); 
    ssSetNumRWork(S, NO_R_WORKS); 
    ssSetNumPWork(S, NO_P_WORKS); 
    ssSetNumDWork(S, NO_D_WORKS); 
 
    ssSetDWorkDataType(S, 0, SS_UINT8); 
 ssSetDWorkWidth(   S, 0, (int)mxGetPr(WIDTH_ARG)[0]); 
    ssSetDWorkWidth(   S, 0, 2048); 
 
 
    ssSetNumModes(         S, 0); 
    ssSetNumNonsampledZCs( S, 0); 
 
    ssSetSFcnParamNotTunable(S,0); 
    ssSetSFcnParamNotTunable(S,1); 
    ssSetSFcnParamNotTunable(S,2); 
 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | SS_OPTION_PLACE_ASAP); 
} 
 
/* Function to initialize sample times */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, mxGetPr(SAMP_TIME_ARG)[0]); 
    if (mxGetN((SAMP_TIME_ARG))==1) { 
        ssSetOffsetTime(S, 0, 0.0); 
    } else { 
        ssSetOffsetTime(S, 0, mxGetPr(SAMP_TIME_ARG)[1]); 
    } 
    ssSetCallSystemOutput(S, 0); 
} 
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#define MDL_START  /* Change to #undef to remove function */ 
#if defined(MDL_START) 
static void mdlStart(SimStruct *S) 
{ 
#ifndef MATLAB_MEX_FILE 
 
    ssGetIWork(S)[0] = 0; /* set current buf pointer = 0 */ 
 ssGetIWork(S)[2] = 0; /* set bufCount = 0 */ 
 
#endif 
} 
#endif 
 
 
/* Function to compute outputs */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
#ifndef MATLAB_MEX_FILE 
    int width   = (int)mxGetPr(WIDTH_ARG)[0];   /* specify output port width 
=WIDTH_ARG that is the max length of GPS sentence  */ 
    int port    = (int)mxGetPr(PORT_ARG )[0] - 1; /* specify COM# */ 
    unsigned char tmp;         /* temp char holder 
*/  
    unsigned char *buf = (unsigned char *)ssGetDWork(S, 0); /* uchar buffer to contain 
bytes from serial port*/ 
    int *current   = ssGetIWork(S);      /* current = addr of 
current position pointer in buf */ 
    int *recLength = ssGetIWork(S) + 1;     /* recLength = addr of 
receieved data length */ 
 int *bufCount = ssGetIWork(S)+ 2;     /* count number of useful 
bytes in buf. */ 
    int  serbufCount;         /* count number of 
useful bytes collected in Serial buf*/ 
 int  HeaderFound, i, j, bufStop, chksum, nextbytetoprocess, lastHeaderPos, EOB; 
 int  GGA=358,RMC=377;// checksum of 'GPGGA','GPRMC' sentences's header 
 int* bl_header;// boolean values for GGA=1 and RMC=2 sentences, 0=nothing found 
 int  headwidth=5;// length of GPS header except '$' 
 
 
    if (ssGetInputPortRealSignal(S, 1)[0] == 0)  /* function is disabled. Stop 
processing and get out */ 
        return; 
 
 serbufCount = rl32eReceiveBufferCount(port);    /* Check number of bytes available 
*/ 
 
 while (serbufCount) 
 {   /* transfer everything in serial buffer to buf */ 
        tmp = rl32eReceiveChar(port); 
        if ((tmp & 0xff00) != 0) 
        {   /* only last 8 bits can be non-zero */ 
            printf("RS232Receive Error: char & 0xff00 != 0 \n"); 
            return; 
        } 
  buf[(*current)++] = tmp & 0xff;  /* put valid char into buf */ 
        serbufCount--;      /* reduce serbufCount */ 
  (*bufCount)++;       /* increase 
bufCount correspondingly */ 
    } 
 /*Initialize logical flags*/ 
 HeaderFound = 0; 
 i = 0; 
 EOB = 0;//end of buffer 
  
 if (*bufCount<width) return; // Not enough bytes to decode, output old value 
  
 while (HeaderFound==0) 
 {/* find Header byte = '$'=36 */ 
 while (buf[i] != HEADER) 
         {  
       if (i < *bufCount) i++; 
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           else 
           { 
               EOB = 1; break; 
            } 
       } /* at exit, buf[i] = HEADER or EOB =1 */ 
    
     if (EOB == 1) 
     {   nextbytetoprocess = lastHeaderPos; 
         break; 
      }//end of if 
 
 if (*bufCount - i < width-1) 
  {   nextbytetoprocess = i; 
  break; 
  }  
 else 
  {chksum = 0;     /* Compute checksum */ 
  for (j=1;j<headwidth+1;j++) 
  { 
      chksum = chksum + buf[i+j]; 
   } 
  }// calculate "checksum" of GPS header={$GPGGA,$GPRMC} 
   if  (chksum == GGA) 
   { HeaderFound = 1; 
     *bl_header=1; 
     ggalng=0; 
     while(*(buf+i+headwidth+1+ggalng) != 13) ggalng++; //"0D"=13,  
     memcpy(ssGetOutputPortSignal(S,1),buf+i+headwidth+1,ggalng); 
      nextbytetoprocess = i + ggalng; 
    } // if checksum tally 
    else 
    { 
            if (chksum == RMC) 
           {  HeaderFound = 1;  
              *bl_header=2; 
        rmclng = 0; 

    while(*(buf+i+headwidth+1+rmclng) != 13) rmclng++;  
    memcpy(ssGetOutputPortSignal(S,1),buf+i+headwidth+1,rmclng); 
              nextbytetoprocess = i + rmclng; 
           } // if checksum tally 
    else 
    { // checksum doesn't tally 
     lastHeaderPos = i; 
     *bl_header=0; 
     }// end of checksum searching 
   } 
      
   memcpy(ssGetOutputPortSignal(S,2),bl_header,1); 
 
  } /* while HeaderFound = 0*/        
         
  if (*bufCount>300) 
  { // If bufCount too large, too many old bytes, just flush buffer 
   *bufCount = 0; 
   *current = *bufCount; 
  }  
  else { // Pack useful bytes in buf to front of buf.  
        bufStop = *bufCount; // bufStop = no. of bytes in pre-packed buf 

   *bufCount = *bufCount - nextbytetoprocess;  // bufCount = no. of  
bytes after packing 

   i = 0; 
   for (j=nextbytetoprocess;j<bufStop;j++) 
    { 
    buf[i] = buf[j]; 
    i++; 
    } 
    *current = *bufCount; // update pointer to end of buf  
       } 
         
 ssCallSystemWithTid(S, 0, 0); /* issue done pulse to outport 0 */ 
    return; 
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#endif 
} 
 
/* Function to perform housekeeping at execution termination */ 
static void mdlTerminate(SimStruct *S) 
{ 
} 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 
 
 

3. GPS GPGGA MESSAGE DECODER 

/*---------------------------------------------------------------------------------- */ 
/*  GPGGA MESSAGE DECODING ROUTINE          */ 
/*  Function: This routine decodes the output from gpsrcv block and decode the      */ 
/*   GPGGA message.           */ 
/*  Feb 1, 2002               */ 
/*  Filename:  gpgga.c              */ 
/*  Written by:  Vladimir Dobohodkov           */ 
/*---------------------------------------------------------------------------------- */ 
/* 
 * File : gpgga.c 
 * $Revision: 1.00 $V.Dobrokhodov 
 */ 
 
#include <stdlib.h> 
#include <math.h> 
#include <stdio.h> 
#include <iostream.h> 
#include <string.h> 
 
#define S_FUNCTION_NAME  gpgga 
#define S_FUNCTION_LEVEL 2 
 
#include "simstruc.h" 
 
/* Input Arguments */ 
#define NUMBER_OF_ARGS          (1) 
#define WIDTH               ssGetSFcnParam(S,0) /* WIDTH is the max length of incoming 
GPS sentence */ 
 
/*================* 
 * Build checking * 
 *================*/ 
static char_T msg[256]; 
 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 *   Setup sizes of the various vectors. 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
 ssSetNumSFcnParams(S, NUMBER_OF_ARGS); 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        sprintf(msg,"Wrong number of input arguments passed.\n" 
                "%d arguments are expected\n",NUMBER_OF_ARGS); 
        ssSetErrorStatus(S,msg); 
        return; /* Parameter mismatch will be reported by Simulink */ 
    } 
 
    if (!ssSetNumInputPorts(S, 1)) return; 
    ssSetInputPortWidth(S, 0, (int)mxGetPr(WIDTH)[0]);//DYNAMICALLY_SIZED 
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    ssSetInputPortDirectFeedThrough(S, 0, 1); 
 
    if (!ssSetNumOutputPorts(S,1)) return; 
    ssSetOutputPortWidth(S, 0, 14);//14DYNAMICALLY_SIZED 
 
    ssSetNumSampleTimes(S, 1); 
 
    /* Take care when specifying exception free code - see sfuntmpl_doc.c */ 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | 
                 SS_OPTION_USE_TLC_WITH_ACCELERATOR); 
} 
 
 
/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 *    Specifiy that we inherit our sample time from the driving block. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
 
int gpssmbl(int_T* input,int length) 
{  
 char tmp[]="\0",output[]="\0"; 
 int i,gpstmp; 
 for (i=0;i<length;i++) 
 { tmp[0]=(char)(*input);strncat(output,tmp,1);input++;} 
 switch (output[0]) 
 { case 'N': gpstmp=0;break;/*North*/ 
  case 'E': gpstmp=1;break;/*East*/ 
  case 'S': gpstmp=2;break;/*South*/ 
  case 'W': gpstmp=3;break;/*West*/ 
  case 'A': gpstmp=4;break;/*Valid or Autonomous*/ 
  case 'D': gpstmp=5;break;/*Differential*/ 
  case 'V': gpstmp=6;break;/*Non-Valid*/ 
  case 'M': gpstmp=7;break;/*Meters*/ 
  default: gpstmp=6;break;/*Non-Valid*/ 
 }/*end of switch*/ 
 return gpstmp; 
};// end of gpssmbl 
 
/* Function: bin2ascii ======================================================= 
  Abstract: function provides GPS data convertion to ASCII and then to FLOAT 
representations */ 
void bin2ascii(int_T* in,int length, char* ext) 
{ int* input=in; 
 char tmp[]="\0"; 
 int i; 
 for (i=0;i<length;i++) 
 { 
  tmp[0]=(char)(*input); 
  strncat(ext,tmp,1); 
  input++; 
 } 
};// end of bin2ascii 
 
 
 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 *   
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    int_T             i=0,j=0; 
    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming data stream*/ 
     real_T            *y    = ssGetOutputPortRealSignal(S,0); 
    /*int_T             width = ssGetOutputPortWidth(S,0);*/ 
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 /****************************************************************************/    
 int_T tempbuf[100]; //here we make an aliase for the uPtrs 
 char ext[]="\0"; 
 int count=0,len_in; 
 double sys[20];//output array of decoded data 
 double res[1]={0}; //output piece of decoded data 
 real_T tmp; 
 /****************************************************************************/    
      for (i=0; i<(*uPtrs[0]); i++){tempbuf[i] = ( int_T)(*uPtrs[i+1]);} 
 /****************************************************************************/    
 
     //GPGGA sentence of GPS message 
     i=0; 
     if ((real_T) tempbuf[i] != (real_T) 44) 
     { /*printf("\n Error! 44 expected, received %d",*tempbuf);*/ 
        return;} 
     else count++; /*miss first comma sign and define shift*/ 
      
     /* UTC & Latitude -1,2*/ 
     for(i=0;i<2;i++) 
     { 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
     }/*end of for*/ 
      
      
     /*Direction of latitude -3*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gpssmbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Longitude -4*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Direction of longitude -5*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gpssmbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*GPS quality indicator -6; 
     Number of SVs  -7; 
     HDOP    -8; 
     Antenna height  -9*/ 
      
     for(i=0;i<4;i++) 
     { 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
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     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
     }/* end of for*/ 
      
     /*Altitude in meters -10*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gpssmbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Geoidal separation -11*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Geoidal separation in meters -12*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gpssmbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Age of DGPS data -13*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Base station ID-14*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 42)/*42 ='*' It's the beginning of next gps 
message*/ 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
 /*END of DGPS GGA sentence*/ 
/****************************************************************************/ 
} 
 
 
/* Function: mdlTerminate ===================================================== 
 * Abstract: 
 *    No termination needed, but we are required to have this routine. 
 */ 
static void mdlTerminate(SimStruct *S) 
{ 
} 
 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 
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4. GPS GPRMC MESSAGE DECODER 

/*---------------------------------------------------------------------------------- */ 
/*  GPRMC MESSAGE DECODING ROUTINE          */ 
/*  Function: This routine decodes the output from gpsrcv block and decode the      */ 
/*   GPRMC message.           */ 
/*  Feb 1, 2002               */ 
/*  Filename:  gprmc.c              */ 
/*  Written by:  Vladimir Dobohodkov           */ 
/*---------------------------------------------------------------------------------- */ 
/* 
 * File : gprmc.c 
 * $Revision: 1.00 $V.Dobrokhodov 
 */ 
 
#include <stdlib.h> 
#include <math.h> 
#include <stdio.h> 
#include <iostream.h> 
#include <string.h> 
 
 
#define S_FUNCTION_NAME  gprmc 
#define S_FUNCTION_LEVEL 2 
 
#include "simstruc.h" 
 
/* Input Arguments */ 
#define NUMBER_OF_ARGS          (1) 
#define WIDTH               ssGetSFcnParam(S,0) /* WIDTH is the max length of incoming 
GPS sentence */ 
 
/*================* 
 * Build checking * 
 *================*/ 
static char_T msg[256]; 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 *   Setup sizes of the various vectors. 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    
 ssSetNumSFcnParams(S, NUMBER_OF_ARGS); 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        sprintf(msg,"Wrong number of input arguments passed.\n" 
                "%d arguments are expected\n",NUMBER_OF_ARGS); 
        ssSetErrorStatus(S,msg); 
        return; /* Parameter mismatch will be reported by Simulink */ 
    } 
 
 if (!ssSetNumInputPorts(S, 1)) return; 
    ssSetInputPortWidth(S, 0, (int)mxGetPr(WIDTH)[0]);//DYNAMICALLY_SIZED 
    ssSetInputPortDirectFeedThrough(S, 0, 1); 
 
    if (!ssSetNumOutputPorts(S,1)) return; 
    ssSetOutputPortWidth(S, 0,12 );//12=RMC 
 
    ssSetNumSampleTimes(S, 1); 
 
    /* Take care when specifying exception free code - see sfuntmpl_doc.c */ 
    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE | 
                 SS_OPTION_USE_TLC_WITH_ACCELERATOR); 
} 
 
 
/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 



 98

 *    Specifiy that we inherit our sample time from the driving block. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
/* Function: gps_smbl ======================================================= 
 * Abstract: function provides GPS symbol informatin processing */ 
 
  
int gps_smbl(int_T* input,int length) 
{  
 char tmp[]="\0",output[]="\0"; 
 int i,gpstmp; 
 for (i=0;i<length;i++) 
 { tmp[0]=(char)(*input);strncat(output,tmp,1);input++;} 
 switch (output[0]) 
 { case 'N': gpstmp=0;break;/*North*/ 
  case 'E': gpstmp=1;break;/*East*/ 
  case 'S': gpstmp=2;break;/*South*/ 
  case 'W': gpstmp=3;break;/*West*/ 
  case 'A': gpstmp=4;break;/*Valid or Autonomous*/ 
  case 'D': gpstmp=5;break;/*Differential*/ 
  case 'V': gpstmp=6;break;/*Non-Valid*/ 
  case 'M': gpstmp=7;break;/*Meters*/ 
  default: gpstmp=6;break;/*Non-Valid*/ 
 }/*end of switch*/ 
 return gpstmp; 
};// end of gps_smbl 
 
/* Function: bin2_ascii ======================================================= 
  Abstract: function provides GPS data convertion to ASCII and then to FLOAT 
representations */ 
void bin2_ascii(int_T* in,int length, char* ext) 
{ int* input=in; 
 char tmp[]="\0"; 
 int i; 
 for (i=0;i<length;i++) 
 { 
  tmp[0]=(char)(*input); 
  strncat(ext,tmp,1); 
  input++; 
 } 
};// end of bin2_ascii 
 
 
 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 *   
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    int_T             i=0,j=0; 
    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);/* Incoming data stream*/ 
     real_T            *y    = ssGetOutputPortRealSignal(S,0); 
    /*int_T             width = ssGetOutputPortWidth(S,0);*/ 
 
 /***********************Interface for C++ programm**********************************/    
 int_T tempbuf[100]; //here we make an aliase for the uPtrs 
 char ext[]="\0"; 
 int count=0,len_in; 
 double sys[20];//output array of decoded data 
 double res[1]={0}; //output piece of decoded data 
 real_T tmp; 
 /**********************Merge data to temporary array***************************/    
      for (i=0; i<(*uPtrs[0]); i++){tempbuf[i] = ( int_T)(*uPtrs[i+1]);} 
 /****************************************************************************/    
 
     //GPRMC sentence of GPS message 
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     i=0; 
     if ((real_T) tempbuf[i] != (real_T) 44) return; 
     else count++; /*miss first comma sign and define shift*/ 
      
     /* UTC -1*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2_ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
      
      
     /*Status -2*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gps_smbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Latitude -3*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2_ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Latitude direction -4*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gps_smbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
  /*Longitude -5*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2_ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
  
     /*Direction of logitude -6*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gps_smbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
     /*Speed over ground[knots] -7*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2_ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
 
     /*Track made good,True[degree] -8*/ 
     len_in=0;/*initialize it again*/ 
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     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2_ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
   
  /*Date in  dd/mm/yy   -9; 
     Manetic variation [degree]  -10;*/ 
      
     for(i=0;i<2;i++) 
     { 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     bin2_ascii((tempbuf+count),len_in,ext); 
     *y++=(real_T)atof(ext); 
     *ext=NULL;/*initialize it again*/ 
     count+=len_in+1;//miss next comma sign and define new shift 
     }/* end of for*/ 
 
     /*Direction of Magnetic variation-11*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 44) 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gps_smbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
 
     /*Mode indicator(A(4)-autonomous;D(5)-differencial;N(0)-not valid) -12*/ 
     len_in=0;/*initialize it again*/ 
     while (tempbuf[count+len_in] != 42)/*=42*/ 
     {++len_in;}//end of while to count the length of GPS field - looking for next 
","{44-ASCII} 
     *y++=gps_smbl((tempbuf+count),len_in); 
     count+=len_in+1;//miss next comma sign and define new shift 
      
 /*END of DGPS RMC sentence*/ 
/****************************************************************************/ 
} 
 
/* Function: mdlTerminate ===================================================== 
 * Abstract: 
 *    No termination needed, but we are required to have this routine. 
 */ 
static void mdlTerminate(SimStruct *S) 
{ 
} 
 
 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 



 101

5. MATLAB CODE FOR LQR CONTROLLER DESIGN 

close all; 
clear all; 
clc; 
 
load frogabcd10;  % load plant model 
i = 1; 
 
 rank(ctrb(as,bs))   %  check that (A,B) is controllable and  
 rank(obsv(as,cs'*cs))  % (A,Q) is observable. Criteria for LQR. Done only 
once. 
 
%% Design parameters for tzeros in synthesis.mdl 
xi_h = 0.9; 
wn_h = 0.4; 
xi_v = 0.9; 
wn_v = 1.2; 
pole_vt = 0.7; 
pole_psi = 1.5; 
 
% Design parameters for LQR 
q1 = diag([1, 1, 1, 1]);  % increase qii, to increase cmd loop bw 
r1 = diag([2000,5000,1500,2]);   % decrease rii, to increase control loop bw 
 
%% Obtaining the synthesis model 
disp(' '); 
disp('tranmission zeros of plant with Vt,h,v,psi output');  
tzero(as,bs,cs,ds) 
[as1,bs1,cs1,ds1] = linmod('synthesis'); %,'v5'); 
disp('transmssion zeros of synthesis model'); 
damp(tzero(as1,bs1,cs1,ds1)) 
 
synth = [1 2*xi_h*wn_h wn_h^2]; 
syntv = [1 2*xi_v*wn_v wn_v^2]; 
disp('Synthesis zeros are:') 
damp(roots(synth)); 
damp(roots(syntv)); 
disp(-pole_vt); 
disp(-pole_psi); 
 
%% Computing the feedback gains 
[k,p,e] = lqr(as1,bs1,cs1'*q1*cs1,r1); 
 
 
%% Obtaining the closed-loop system  
kp = k(:,1:10);  
ki = k(:,11:14); 
[ac,bc,cc,dc] = linmod('model10'); %,'v5'); 
 
 
%% Check criteria 1:  Feedback system must be stable 
disp('Ensure that all the closed loop poles are stable'); 
damp(eig(ac)) 
 
%% Now include actuator into model to see time-response 
[ac1,bc1,cc1,dc1] = linmod('model10wAct'); %,'v5'); 
damp(eig(ac1)) 
 
% plots Vt_out to step input in Vt_cmd 
 
figure(i); i=i+1; 
step(ac1,bc1(:,5),cc1(5,:),dc1(5,5));  
% axis([0 20 -0.2 1.8]) 
title('Vt out to step input in Vt cmd'); 
 
% plots h_out to step input in h_cmd 
figure(i); i=i+1; 
step( ac1,bc1(:,6),cc1(6,:),dc1(6,6) ); 
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% axis([0 20 -0.2 1.8]) 
title('h out to step input in h cmd'); 
grid; 
 
% plots v_out to step input in v_cmd 
figure(i); i=i+1; 
step( ac1,bc1(:,7),cc1(7,:),dc1(7,7) ); 
% axis([0 20 -0.2 1.8]) 
title('v out to step input in v cmd'); 
grid; 
 
% plots psi_out to step input in psi_cmd 
figure(i); i=i+1; 
step( ac1,bc1(:,8),cc1(8,:),dc1(8,8) ); 
% axis([0 20 -0.2 1.8]) 
title('psi out to step input in psi cmd'); 
grid; 
 
 
%% Criteria 5:  Aileron, Elevator, Rudder loop bandwidth < 10 rad/s 
%%      Thrust loop bandwidth < 5 rad/s 
 
figure(i); i=i+1; 
margin( ac1,bc1(:,1),cc1(1,:),dc1(1,1) ) 
title('Bode of closed loop from del aileron to aileron out. (BW ~ 10 rad/s)'); 
 
figure(i); i=i+1; 
margin( ac1,bc1(:,2),cc1(2,:),dc1(2,2) ) 
title('Bode of closed loop from del elevator to elevator out. (BW ~ 10 rad/s)'); 
 
figure(i); i=i+1; 
margin( ac1,bc1(:,3),cc1(3,:),dc1(3,3) ) 
title('Bode of closed loop from del rudder to rudder out. (BW ~ 10 rad/s)'); 
 
figure(i); i=i+1; 
margin( ac1,bc1(:,4),cc1(4,:),dc1(4,4) ) 
title('Bode of closed loop from del thrust to thrust out. (BW ~ 5 rad/s)'); 
 
 
%% Criteria 4:  Gain margin in elevator and thrust loops should  
%% be at least 6 db and phase margin 45 degrees. 
 
[ao1,bo1,co1,do1] = linmod('open_a'); 
figure(i); i=i+1; 
margin(ao1,bo1(:,1),co1(1,:),do1(1,1)) 
title('Bode of open loop from del aileron cmd to aileron out'); 
disp('Gain and phase margin for aileron loop'); 
 
[ao2,bo2,co2,do2] = linmod('open_e'); 
figure(i); i=i+1; 
margin(ao2,bo2(:,2),co2(2,:),do2(2,2)) 
title('Bode of open loop from del elevator cmd to elevator out'); 
disp('Gain and phase margin for elevator loop'); 
 
 
[ao3,bo3,co3,do3] = linmod('open_r'); 
figure(i); i=i+1; 
margin(ao3,bo3(:,3),co3(3,:),do3(3,3)) 
title('Bode of open loop from del rudder cmd to rudder out'); 
disp('Gain and phase margin for rudder loop'); 
 
 
[ao4,bo4,co4,do4] = linmod('open_th'); 
figure(i); i=i+1; 
margin(ao4,bo4(:,4),co4(4,:),do4(4,4)) 
title('Bode of open loop from del thrust cmd to thrust out'); 
disp('Gain and phase margin for thrust loop'); 
 
break; 
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